Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967960963> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1967960963 endingPage "414" @default.
- W1967960963 startingPage "404" @default.
- W1967960963 abstract "A common problem in software cost estimation is the manipulation of incomplete or missing data in databases used for the development of prediction models. In such cases, the most popular and simple method of handling missing data is to ignore either the projects or the attributes with missing observations. This technique causes the loss of valuable information and therefore may lead to inaccurate cost estimation models. On the other hand, there are various imputation methods used to estimate the missing values in a data set. These methods are applied mainly on numerical data and produce continuous estimates. However, it is well known that the majority of the cost data sets contain software projects with mostly categorical attributes with many missing values. It is therefore reasonable to use some estimating method producing categorical rather than continuous values. The purpose of this paper is to investigate the possibility of using such a method for estimating categorical missing values in software cost databases. Specifically, the method known as multinomial logistic regression (MLR) is suggested for imputation and is applied on projects of the ISBSG multi-organizational software database. Comparisons of MLR with other techniques for handling missing data, such as listwise deletion (LD), mean imputation (MI), expectation maximization (EM) and regression imputation (RI) under different patterns and percentages of missing data, show the high efficiency of the proposed method." @default.
- W1967960963 created "2016-06-24" @default.
- W1967960963 creator A5008070273 @default.
- W1967960963 creator A5067660374 @default.
- W1967960963 date "2006-03-01" @default.
- W1967960963 modified "2023-09-23" @default.
- W1967960963 title "Categorical missing data imputation for software cost estimation by multinomial logistic regression" @default.
- W1967960963 cites W2006013622 @default.
- W1967960963 cites W2033564924 @default.
- W1967960963 cites W2074960943 @default.
- W1967960963 cites W2095778055 @default.
- W1967960963 cites W2098168647 @default.
- W1967960963 cites W2104236502 @default.
- W1967960963 cites W2131378644 @default.
- W1967960963 cites W2136691316 @default.
- W1967960963 cites W2157542847 @default.
- W1967960963 cites W2167110832 @default.
- W1967960963 cites W4249610051 @default.
- W1967960963 doi "https://doi.org/10.1016/j.jss.2005.02.026" @default.
- W1967960963 hasPublicationYear "2006" @default.
- W1967960963 type Work @default.
- W1967960963 sameAs 1967960963 @default.
- W1967960963 citedByCount "58" @default.
- W1967960963 countsByYear W19679609632012 @default.
- W1967960963 countsByYear W19679609632013 @default.
- W1967960963 countsByYear W19679609632014 @default.
- W1967960963 countsByYear W19679609632015 @default.
- W1967960963 countsByYear W19679609632016 @default.
- W1967960963 countsByYear W19679609632017 @default.
- W1967960963 countsByYear W19679609632018 @default.
- W1967960963 countsByYear W19679609632019 @default.
- W1967960963 countsByYear W19679609632020 @default.
- W1967960963 countsByYear W19679609632021 @default.
- W1967960963 countsByYear W19679609632022 @default.
- W1967960963 countsByYear W19679609632023 @default.
- W1967960963 crossrefType "journal-article" @default.
- W1967960963 hasAuthorship W1967960963A5008070273 @default.
- W1967960963 hasAuthorship W1967960963A5067660374 @default.
- W1967960963 hasConcept C105795698 @default.
- W1967960963 hasConcept C117568660 @default.
- W1967960963 hasConcept C119857082 @default.
- W1967960963 hasConcept C124101348 @default.
- W1967960963 hasConcept C192065140 @default.
- W1967960963 hasConcept C199360897 @default.
- W1967960963 hasConcept C2777904410 @default.
- W1967960963 hasConcept C33923547 @default.
- W1967960963 hasConcept C41008148 @default.
- W1967960963 hasConcept C5274069 @default.
- W1967960963 hasConcept C58041806 @default.
- W1967960963 hasConcept C9357733 @default.
- W1967960963 hasConceptScore W1967960963C105795698 @default.
- W1967960963 hasConceptScore W1967960963C117568660 @default.
- W1967960963 hasConceptScore W1967960963C119857082 @default.
- W1967960963 hasConceptScore W1967960963C124101348 @default.
- W1967960963 hasConceptScore W1967960963C192065140 @default.
- W1967960963 hasConceptScore W1967960963C199360897 @default.
- W1967960963 hasConceptScore W1967960963C2777904410 @default.
- W1967960963 hasConceptScore W1967960963C33923547 @default.
- W1967960963 hasConceptScore W1967960963C41008148 @default.
- W1967960963 hasConceptScore W1967960963C5274069 @default.
- W1967960963 hasConceptScore W1967960963C58041806 @default.
- W1967960963 hasConceptScore W1967960963C9357733 @default.
- W1967960963 hasIssue "3" @default.
- W1967960963 hasLocation W19679609631 @default.
- W1967960963 hasOpenAccess W1967960963 @default.
- W1967960963 hasPrimaryLocation W19679609631 @default.
- W1967960963 hasRelatedWork W124339703 @default.
- W1967960963 hasRelatedWork W1967960963 @default.
- W1967960963 hasRelatedWork W1971356345 @default.
- W1967960963 hasRelatedWork W21744023 @default.
- W1967960963 hasRelatedWork W2431448603 @default.
- W1967960963 hasRelatedWork W252385730 @default.
- W1967960963 hasRelatedWork W2572572583 @default.
- W1967960963 hasRelatedWork W2913891167 @default.
- W1967960963 hasRelatedWork W3010658448 @default.
- W1967960963 hasRelatedWork W3207602811 @default.
- W1967960963 hasVolume "79" @default.
- W1967960963 isParatext "false" @default.
- W1967960963 isRetracted "false" @default.
- W1967960963 magId "1967960963" @default.
- W1967960963 workType "article" @default.