Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968015483> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1968015483 endingPage "30" @default.
- W1968015483 startingPage "1" @default.
- W1968015483 abstract "The complexity of subclasses of logical theories (mainly Presburger and Skolem arithmetic) is studied. The subclasses are defined by the structure of the quantifier prefix. For this purpose finite versions of dominoes (tiling problems) are used. Dominoes were introduced in the sixties as a tool to prove the undecidability of the ∀∃∀-case of the predicate calculus and have found in the meantime many other applications. Here it is shown that problems in complexity classes NTIME(T(n)) are reducible to domino problems where the space to be tiled is a square of size T(n). Because of their simple combinatorial structure these dominoes provide a convinient method for providing lower complexity bounds for simple formula classes in logical theories. Using this method it is shown that the class of ∃∀∗-formulas in Presburger arithmetic has exponential complexity. This seems to be the simplest class with this property because the set of ∃∗-sentences in Presburger arithmetic is NP-complete and the classes which is shown to be fixed prefixes (i.e. where also the number of variables is limited) are all contained in appropriate levels of the polynomial time-hierarchy. Skolem arithmetic is the theory of positive natural numbers with multiplication and 's thus (isomorphic to) the weak direct power of Presburger arithmetic. For the theory in general as well as for most subclasses the complexity is one exponential step higher than in the case of Presburger arithmetic. An exception is the class of ∃∗-formulas which is shown to be NP-complete. On the other hand there is a formula class with fixed dimension which already has an exponential lower complexity bound. The last section mentions some results on other logical theories and indicates some possible lines of future research." @default.
- W1968015483 created "2016-06-24" @default.
- W1968015483 creator A5010064604 @default.
- W1968015483 date "1989-06-01" @default.
- W1968015483 modified "2023-09-23" @default.
- W1968015483 title "Dominoes and the complexity of subclasses of logical theories" @default.
- W1968015483 cites W1511526676 @default.
- W1968015483 cites W1975885036 @default.
- W1968015483 cites W1982939827 @default.
- W1968015483 cites W1983039309 @default.
- W1968015483 cites W1992963060 @default.
- W1968015483 cites W1996184580 @default.
- W1968015483 cites W1996834809 @default.
- W1968015483 cites W2032725063 @default.
- W1968015483 cites W2035496804 @default.
- W1968015483 cites W2045664183 @default.
- W1968015483 cites W2050426366 @default.
- W1968015483 cites W2065251436 @default.
- W1968015483 cites W2071228820 @default.
- W1968015483 cites W2080896750 @default.
- W1968015483 cites W2082494602 @default.
- W1968015483 cites W2083251422 @default.
- W1968015483 cites W3037175162 @default.
- W1968015483 cites W4241108585 @default.
- W1968015483 cites W4242289817 @default.
- W1968015483 cites W4247725673 @default.
- W1968015483 doi "https://doi.org/10.1016/0168-0072(89)90023-7" @default.
- W1968015483 hasPublicationYear "1989" @default.
- W1968015483 type Work @default.
- W1968015483 sameAs 1968015483 @default.
- W1968015483 citedByCount "23" @default.
- W1968015483 countsByYear W19680154832014 @default.
- W1968015483 countsByYear W19680154832015 @default.
- W1968015483 countsByYear W19680154832016 @default.
- W1968015483 countsByYear W19680154832017 @default.
- W1968015483 countsByYear W19680154832018 @default.
- W1968015483 countsByYear W19680154832020 @default.
- W1968015483 countsByYear W19680154832021 @default.
- W1968015483 countsByYear W19680154832022 @default.
- W1968015483 crossrefType "journal-article" @default.
- W1968015483 hasAuthorship W1968015483A5010064604 @default.
- W1968015483 hasConcept C111472728 @default.
- W1968015483 hasConcept C114614502 @default.
- W1968015483 hasConcept C118615104 @default.
- W1968015483 hasConcept C138885662 @default.
- W1968015483 hasConcept C153269930 @default.
- W1968015483 hasConcept C154945302 @default.
- W1968015483 hasConcept C184264201 @default.
- W1968015483 hasConcept C2777212361 @default.
- W1968015483 hasConcept C2780586882 @default.
- W1968015483 hasConcept C311688 @default.
- W1968015483 hasConcept C33923547 @default.
- W1968015483 hasConcept C39637292 @default.
- W1968015483 hasConcept C41008148 @default.
- W1968015483 hasConcept C5852641 @default.
- W1968015483 hasConcept C94375191 @default.
- W1968015483 hasConceptScore W1968015483C111472728 @default.
- W1968015483 hasConceptScore W1968015483C114614502 @default.
- W1968015483 hasConceptScore W1968015483C118615104 @default.
- W1968015483 hasConceptScore W1968015483C138885662 @default.
- W1968015483 hasConceptScore W1968015483C153269930 @default.
- W1968015483 hasConceptScore W1968015483C154945302 @default.
- W1968015483 hasConceptScore W1968015483C184264201 @default.
- W1968015483 hasConceptScore W1968015483C2777212361 @default.
- W1968015483 hasConceptScore W1968015483C2780586882 @default.
- W1968015483 hasConceptScore W1968015483C311688 @default.
- W1968015483 hasConceptScore W1968015483C33923547 @default.
- W1968015483 hasConceptScore W1968015483C39637292 @default.
- W1968015483 hasConceptScore W1968015483C41008148 @default.
- W1968015483 hasConceptScore W1968015483C5852641 @default.
- W1968015483 hasConceptScore W1968015483C94375191 @default.
- W1968015483 hasIssue "1" @default.
- W1968015483 hasLocation W19680154831 @default.
- W1968015483 hasOpenAccess W1968015483 @default.
- W1968015483 hasPrimaryLocation W19680154831 @default.
- W1968015483 hasRelatedWork W1494939852 @default.
- W1968015483 hasRelatedWork W1576867227 @default.
- W1968015483 hasRelatedWork W1833513464 @default.
- W1968015483 hasRelatedWork W1968015483 @default.
- W1968015483 hasRelatedWork W2166566648 @default.
- W1968015483 hasRelatedWork W2370882047 @default.
- W1968015483 hasRelatedWork W2789687033 @default.
- W1968015483 hasRelatedWork W41138031 @default.
- W1968015483 hasRelatedWork W41804490 @default.
- W1968015483 hasRelatedWork W4298170805 @default.
- W1968015483 hasVolume "43" @default.
- W1968015483 isParatext "false" @default.
- W1968015483 isRetracted "false" @default.
- W1968015483 magId "1968015483" @default.
- W1968015483 workType "article" @default.