Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968032964> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1968032964 endingPage "3088" @default.
- W1968032964 startingPage "3079" @default.
- W1968032964 abstract "Any realistic model of learning from samples must address the issue of noisy data. AdaBoost is known as an effective method for improving the performance of base classifiers both theoretically and empirically. However, previous studies have shown that AdaBoost is prone to overfitting, especially in noisy domains. On the other hand, the kNN rule is one of the oldest and simplest methods for pattern classification. Nevertheless, it often yields competitive results, and in certain domains, when cleverly combined with prior knowledge, it has significantly advanced the state-of-the-art. In this paper, an edited AdaBoost by weighted kNN (EAdaBoost ) is designed where AdaBoost and kNN naturally complement each other. First, AdaBoost is run on the training data to capitalize on some statistical regularity in the data. Then, a weighted kNN algorithm is run on the feature space composed of classifiers produced by AdaBoost to achieve competitive results. AdaBoost is then used to enhance the classification accuracy and avoid overfitting by editing the data sets using the weighted kNN algorithm for improving the quality of training data. Experiments performed on ten different UCI data sets show that the new Boosting algorithm almost always achieves considerably better classification accuracy than AdaBoost. Furthermore, experiments on data with artificially controlled noise indicate that the new Boosting algorithm is robust to noise." @default.
- W1968032964 created "2016-06-24" @default.
- W1968032964 creator A5048293972 @default.
- W1968032964 creator A5078233601 @default.
- W1968032964 date "2010-10-01" @default.
- W1968032964 modified "2023-10-15" @default.
- W1968032964 title "Edited AdaBoost by weighted kNN" @default.
- W1968032964 cites W1487831638 @default.
- W1968032964 cites W1540007258 @default.
- W1968032964 cites W1595276678 @default.
- W1968032964 cites W1597529531 @default.
- W1968032964 cites W1605688901 @default.
- W1968032964 cites W1840338487 @default.
- W1968032964 cites W1931284523 @default.
- W1968032964 cites W1975846642 @default.
- W1968032964 cites W1988790447 @default.
- W1968032964 cites W2002723858 @default.
- W1968032964 cites W2024046085 @default.
- W1968032964 cites W2045240677 @default.
- W1968032964 cites W2051570664 @default.
- W1968032964 cites W2054498688 @default.
- W1968032964 cites W2061913380 @default.
- W1968032964 cites W2084362125 @default.
- W1968032964 cites W2095955281 @default.
- W1968032964 cites W2095979710 @default.
- W1968032964 cites W2119955173 @default.
- W1968032964 cites W2122111042 @default.
- W1968032964 cites W2127452375 @default.
- W1968032964 cites W2157364932 @default.
- W1968032964 cites W2168478288 @default.
- W1968032964 cites W4244952642 @default.
- W1968032964 cites W1562097319 @default.
- W1968032964 doi "https://doi.org/10.1016/j.neucom.2010.06.024" @default.
- W1968032964 hasPublicationYear "2010" @default.
- W1968032964 type Work @default.
- W1968032964 sameAs 1968032964 @default.
- W1968032964 citedByCount "53" @default.
- W1968032964 countsByYear W19680329642012 @default.
- W1968032964 countsByYear W19680329642013 @default.
- W1968032964 countsByYear W19680329642014 @default.
- W1968032964 countsByYear W19680329642015 @default.
- W1968032964 countsByYear W19680329642016 @default.
- W1968032964 countsByYear W19680329642017 @default.
- W1968032964 countsByYear W19680329642018 @default.
- W1968032964 countsByYear W19680329642019 @default.
- W1968032964 countsByYear W19680329642020 @default.
- W1968032964 countsByYear W19680329642021 @default.
- W1968032964 countsByYear W19680329642022 @default.
- W1968032964 countsByYear W19680329642023 @default.
- W1968032964 crossrefType "journal-article" @default.
- W1968032964 hasAuthorship W1968032964A5048293972 @default.
- W1968032964 hasAuthorship W1968032964A5078233601 @default.
- W1968032964 hasConcept C119857082 @default.
- W1968032964 hasConcept C12267149 @default.
- W1968032964 hasConcept C141404830 @default.
- W1968032964 hasConcept C153180895 @default.
- W1968032964 hasConcept C154945302 @default.
- W1968032964 hasConcept C22019652 @default.
- W1968032964 hasConcept C41008148 @default.
- W1968032964 hasConcept C46686674 @default.
- W1968032964 hasConcept C50644808 @default.
- W1968032964 hasConceptScore W1968032964C119857082 @default.
- W1968032964 hasConceptScore W1968032964C12267149 @default.
- W1968032964 hasConceptScore W1968032964C141404830 @default.
- W1968032964 hasConceptScore W1968032964C153180895 @default.
- W1968032964 hasConceptScore W1968032964C154945302 @default.
- W1968032964 hasConceptScore W1968032964C22019652 @default.
- W1968032964 hasConceptScore W1968032964C41008148 @default.
- W1968032964 hasConceptScore W1968032964C46686674 @default.
- W1968032964 hasConceptScore W1968032964C50644808 @default.
- W1968032964 hasFunder F4320321001 @default.
- W1968032964 hasIssue "16-18" @default.
- W1968032964 hasLocation W19680329641 @default.
- W1968032964 hasOpenAccess W1968032964 @default.
- W1968032964 hasPrimaryLocation W19680329641 @default.
- W1968032964 hasRelatedWork W1487831638 @default.
- W1968032964 hasRelatedWork W1502951582 @default.
- W1968032964 hasRelatedWork W1570592793 @default.
- W1968032964 hasRelatedWork W2121565117 @default.
- W1968032964 hasRelatedWork W2327035729 @default.
- W1968032964 hasRelatedWork W2348748958 @default.
- W1968032964 hasRelatedWork W2385662756 @default.
- W1968032964 hasRelatedWork W2393964553 @default.
- W1968032964 hasRelatedWork W2884325279 @default.
- W1968032964 hasRelatedWork W2585372724 @default.
- W1968032964 hasVolume "73" @default.
- W1968032964 isParatext "false" @default.
- W1968032964 isRetracted "false" @default.
- W1968032964 magId "1968032964" @default.
- W1968032964 workType "article" @default.