Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968160256> ?p ?o ?g. }
- W1968160256 endingPage "22692" @default.
- W1968160256 startingPage "22681" @default.
- W1968160256 abstract "Tumor necrosis factor (TNF) elicits a diverse array of inflammatory responses through engagement of its type-1 receptor (TNFR1). Many of these responses require de novogene expression mediated by the activator protein-1 (AP-1) transcription factor. We investigated the mechanism by which TNFR1 recruits the stress-activated protein kinases (SAPKs) and the p38s, two mitogen-activated protein kinase (MAPK) families that together regulate AP-1. We show that the human SPS1 homologue germinal center kinase (GCK) can interact in vivo with the TNFR1 signal transducer TNFR-associated factor-2 (TRAF2) and with MAPK/ERK kinase kinase 1 (MEKK1), a MAPK kinase kinase (MAPKKK) upstream of the SAPKs, thereby coupling TRAF2 to the SAPKs. Receptor interacting protein (RIP) is a second TNFR signal transducer which can bind TRAF2. We show that RIP activates both p38 and SAPK; and that TRAF2 activation of p38 requires RIP. We also demonstrate that the RIP noncatalytic intermediate domain associates in vivo with an endogenous MAPKKK that can activate the p38 pathway in vitro. Thus, TRAF2 initiates SAPK and p38 activation by binding two proximal protein kinases: GCK and RIP. GCK and RIP, in turn, signal by binding MAPKKKs upstream of the SAPKs and p38s. Tumor necrosis factor (TNF) elicits a diverse array of inflammatory responses through engagement of its type-1 receptor (TNFR1). Many of these responses require de novogene expression mediated by the activator protein-1 (AP-1) transcription factor. We investigated the mechanism by which TNFR1 recruits the stress-activated protein kinases (SAPKs) and the p38s, two mitogen-activated protein kinase (MAPK) families that together regulate AP-1. We show that the human SPS1 homologue germinal center kinase (GCK) can interact in vivo with the TNFR1 signal transducer TNFR-associated factor-2 (TRAF2) and with MAPK/ERK kinase kinase 1 (MEKK1), a MAPK kinase kinase (MAPKKK) upstream of the SAPKs, thereby coupling TRAF2 to the SAPKs. Receptor interacting protein (RIP) is a second TNFR signal transducer which can bind TRAF2. We show that RIP activates both p38 and SAPK; and that TRAF2 activation of p38 requires RIP. We also demonstrate that the RIP noncatalytic intermediate domain associates in vivo with an endogenous MAPKKK that can activate the p38 pathway in vitro. Thus, TRAF2 initiates SAPK and p38 activation by binding two proximal protein kinases: GCK and RIP. GCK and RIP, in turn, signal by binding MAPKKKs upstream of the SAPKs and p38s. Tumor necrosis factor (TNF) 1The abbreviations used are: TNFtumor necrosis factorAP-1activator protein-1ATFactivating transcription factorCDcluster of differentiationCTGCK carboxyl-terminal extensionCTDGCK carboxyl-terminal regulatory domainERKextracellular signal-regulated kinaseGCKgerminal center kinaseGCKRGCK-relatedGSH glutathioneGST, glutathioneS-transferaseHAhemagglutininIDintermediate domainMAPKmitogen-activated protein kinaseMBPmyelin basic proteinMEKMAPK/ERK kinaseMEKKMEK-kinaseMKKMAPK kinaseMAPKKKMAPK kinase kinaseNF-κBnuclear factor-κBPAGEpolyacrylamide gel electrophoresisPAKp21-activated kinasePESTPro/Glu/Ser/Thr-richRINGreally interesting new geneRIPreceptor interacting proteinSAPKstress-activated protein kinaseSEKSAPK/ERK kinaseSPSsporulation specificSTEsterileTAKTGF-β-activated kinaseTNFRTNF receptorTpl-2/Cottumor progression locus-2TRADDTNFR-associated death domain proteinTRAFTNFR-associated factor. is a multifunctional cytokine that induces a broad spectrum of responses, both at the cellular and organismal level. These include fever, shock, cachexia, tumor necrosis, leukocyte adhesion, and extravasation, induction of other cytokines, cell growth, and apoptosis (1Bazzoni F. Beutler B. Flier J.S. The Tumor Necrosis Factor Ligand and Receptor Families. 1996: 1717-1725Google Scholar). TNF is important in the regulation of normal immune development where it governs in part the ablation of autoreactive lymphocytes during immune cell selection. In addition, TNF has been implicated in the pathogenesis of noninsulin-dependent diabetes, as well as acute and chronic inflammatory diseases such as endotoxic shock and arthritis. TNF exerts its effects by binding to one of two receptors, the 55-kDa TNF receptor (TNFR)-1/CD120a or the 75-kDa TNFR2/CD120b (1Bazzoni F. Beutler B. Flier J.S. The Tumor Necrosis Factor Ligand and Receptor Families. 1996: 1717-1725Google Scholar, 2Vandenabeele P. Declercq W. Beyaert R. Fiers W. Trends Cell Biol. 1995; 5: 392-399Abstract Full Text PDF PubMed Scopus (739) Google Scholar). TNF binding results in receptor trimerization and the consequent initiation of signal transduction (2Vandenabeele P. Declercq W. Beyaert R. Fiers W. Trends Cell Biol. 1995; 5: 392-399Abstract Full Text PDF PubMed Scopus (739) Google Scholar). tumor necrosis factor activator protein-1 activating transcription factor cluster of differentiation GCK carboxyl-terminal extension GCK carboxyl-terminal regulatory domain extracellular signal-regulated kinase germinal center kinase GCK-related GST, glutathioneS-transferase hemagglutinin intermediate domain mitogen-activated protein kinase myelin basic protein MAPK/ERK kinase MEK-kinase MAPK kinase MAPK kinase kinase nuclear factor-κB polyacrylamide gel electrophoresis p21-activated kinase Pro/Glu/Ser/Thr-rich really interesting new gene receptor interacting protein stress-activated protein kinase SAPK/ERK kinase sporulation specific sterile TGF-β-activated kinase TNF receptor tumor progression locus-2 TNFR-associated death domain protein TNFR-associated factor. The protein recruitment model for TNF signaling posits that ligand-induced TNFR trimerization results in the binding, to the TNFR intracellular extensions, of signal transducing proteins which then relay signals to downstream effectors. The intracellular extension of TNFR1 contains a death domain. Death domains mediate homotypic and heterotypic protein-protein interactions (2Vandenabeele P. Declercq W. Beyaert R. Fiers W. Trends Cell Biol. 1995; 5: 392-399Abstract Full Text PDF PubMed Scopus (739) Google Scholar, 3Tartaglia L.A. Ayres T.M. Wong G.H.W. Goeddel D.V. Cell. 1993; 74: 845-853Abstract Full Text PDF PubMed Scopus (1169) Google Scholar) and are critical for nucleating receptor-effector complexes and implementing several signaling programs including apoptosis (2Vandenabeele P. Declercq W. Beyaert R. Fiers W. Trends Cell Biol. 1995; 5: 392-399Abstract Full Text PDF PubMed Scopus (739) Google Scholar, 3Tartaglia L.A. Ayres T.M. Wong G.H.W. Goeddel D.V. Cell. 1993; 74: 845-853Abstract Full Text PDF PubMed Scopus (1169) Google Scholar). Among the first death domain-containing proteins shown to bind TNFR1 was TNFR-associated death domain protein (TRADD). The binding of TRADD and TNFR1 requires the death domains of both polypeptides (4Hsu H. Xiong J. Goeddel D.V. Cell. 1995; 81: 495-504Abstract Full Text PDF PubMed Scopus (1747) Google Scholar). TRADD can also bind two additional signal transducers: TNFR-associated factor-2 (TRAF2), a member of the TRAF family of signal transducers, and receptor interacting protein (RIP), a death domain-containing Ser/Thr kinase. RIP can also bind TRAF2 and, accordingly, TNF treatment is thought to result in the formation of a TRADD·RIP·TRAF2 complex (5Hsu H. Shu H.-B. Pan M.-G. Goeddel D.V. Cell. 1996; 84: 299-308Abstract Full Text Full Text PDF PubMed Scopus (1735) Google Scholar, 6Hsu H. Huang J. Shu H.-B. Baichwal V. Goeddel D.V. Immunity. 1996; 4: 387-396Abstract Full Text Full Text PDF PubMed Scopus (980) Google Scholar, 7Rothe M. Wong S.C. Henzel W.J. Goeddel D.V. Cell. 1994; 78: 681-692Abstract Full Text PDF PubMed Scopus (932) Google Scholar, 8Hu H.M. O'Rourke K. Boguski M.S. Dixit V.M. J. Biol. Chem. 1994; 269: 30069-30072Abstract Full Text PDF PubMed Google Scholar, 9Cheng G. Cleary A.M. Ye Z.-S. Hong D.I. Lederman S. Baltimore D. Science. 1995; 267: 1494-1498Crossref PubMed Scopus (442) Google Scholar, 10Cao Z. Xiong J. Takeuchi M. Kurama T. Goeddel D.V. Nature. 1996; 383: 443-446Crossref PubMed Scopus (1122) Google Scholar, 11Nakano H. Oshima H. Chung W. Williams-Abbot L. Ware C.F. Yagita H. Okumura K. J. Biol. Chem. 1996; 271: 14661-14664Abstract Full Text Full Text PDF PubMed Scopus (310) Google Scholar, 12Stanger B.Z. Leder P. Lee T.-H. Kim E. Seed B. Cell. 1995; 81: 513-523Abstract Full Text PDF PubMed Scopus (865) Google Scholar, 13Takeuchi M. Rothe M. Goeddel D.V. J. Biol. Chem. 1996; 271: 19935-19942Abstract Full Text Full Text PDF PubMed Scopus (280) Google Scholar). The activation of gene expression is an important consequence of TNFR1 engagement and is essential for many of the biological responses to TNF. TNF can recruit the multimeric transcription factors activator protein-1 (AP-1) and nuclear factor κB (NF-κB) (14Brenner D.A. O'Hara M. Angel P. Chojkier M. Karin M. Nature. 1989; 337: 661-663Crossref PubMed Scopus (611) Google Scholar, 15Verma I.M. Stevenson J.K. Schwartz E.M. Van Antwerp D. Miyamoto S. Genes Dev. 1995; 9: 2723-2735Crossref PubMed Scopus (1662) Google Scholar). TNF recruitment of AP-1 is pivotal to the inflammatory response. AP-1 is a heterodimer consisting of the c-Jun transcription factor and either a member of the Fos or activating transcription factor (ATF) family of transcription factors (16Karin M. Liu Z.-g. Zandi E. Curr. Opin. Cell. Biol. 1997; 9: 240-246Crossref PubMed Scopus (2310) Google Scholar). Upon activation, AP-1 binds tocis elements in the genes for cytokines such as interleukin-2 and TNF itself. In addition, AP-1 is necessary for the expression of inflammatory proteases such as collagenase, and cell surface adhesion molecules such as E-selectin, which promote leukocyte adhesion and extravasation (16Karin M. Liu Z.-g. Zandi E. Curr. Opin. Cell. Biol. 1997; 9: 240-246Crossref PubMed Scopus (2310) Google Scholar, 17Read M.A. Whitley M.Z. Gupta S. Pierce J.W. Best J. Davis R.J. Collins T. J. Biol. Chem. 1997; 272: 2753-2761Abstract Full Text Full Text PDF PubMed Scopus (335) Google Scholar). TNF can activate two subfamilies of the mitogen-activated protein kinase (MAPK) family of Ser/Thr kinases that together are largely responsible for the regulation of AP-1 in response to inflammatory stimuli (18Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.A. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2414) Google Scholar, 19Han J. Lee J.-D. Bibbs L. Ulevitch R.J. Science. 1994; 265: 808-811Crossref PubMed Scopus (2413) Google Scholar, 20Raingeaud J. Gupta S. Rogers J.S. Dickens M. Han J. Ulevitch R.J. Davis R.J. J. Biol. Chem. 1995; 270: 7420-7426Abstract Full Text Full Text PDF PubMed Scopus (2041) Google Scholar): the stress-activated protein kinases (SAPKs, also referred to as Jun NH2-terminal kinases, JNKs (18Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.A. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2414) Google Scholar, 21Dérijard B. Hibi M. Wu I.-H. Barrett T. Su B. Deng T. Karin M. Davis R.J. Cell. 1994; 76: 1025-1037Abstract Full Text PDF PubMed Scopus (2955) Google Scholar)) and the p38s. The SAPKs and p38s regulate AP-1 both by directly phosphorylating AP-1 components, and through the phosphorylation of transcription factors that participate in regulating the expression of c-jun and c-fos (18Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.A. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2414) Google Scholar, 19Han J. Lee J.-D. Bibbs L. Ulevitch R.J. Science. 1994; 265: 808-811Crossref PubMed Scopus (2413) Google Scholar, 20Raingeaud J. Gupta S. Rogers J.S. Dickens M. Han J. Ulevitch R.J. Davis R.J. J. Biol. Chem. 1995; 270: 7420-7426Abstract Full Text Full Text PDF PubMed Scopus (2041) Google Scholar, 21Dérijard B. Hibi M. Wu I.-H. Barrett T. Su B. Deng T. Karin M. Davis R.J. Cell. 1994; 76: 1025-1037Abstract Full Text PDF PubMed Scopus (2955) Google Scholar, 22Gupta S. Campbell D. Dérijard B. Davis R.J. Science. 1995; 267: 389-393Crossref PubMed Scopus (1337) Google Scholar, 23Whitmarsh A.J. Shore P. Sharrocks A.D. Davis R.J. Science. 1995; 269: 403-407Crossref PubMed Scopus (880) Google Scholar, 24Treisman R. Curr. Opin. Genet. Dev. 1994; 4: 96-101Crossref PubMed Scopus (620) Google Scholar, 25Han J. Jiang Y. Li Z. Kravchenko V.V. Ulevitch R.J. Nature. 1997; 386: 563-566Crossref PubMed Scopus (156) Google Scholar). MAPK pathways have been strongly conserved in eukaryotic evolution and always employ a central, three tiered “core module” of protein kinases, wherein MAPKs are activated by Tyr and Thr phosphorylation catalyzed by members of the MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) family. MEKs, in turn are activated by Ser/Thr phosphorylation catalyzed by several protein kinase families collectively referred to as MAPK kinase kinases (MAPKKKs) (26Kyriakis J.M. Avruch J. J. Biol. Chem. 1996; 271: 24313-24316Abstract Full Text Full Text PDF PubMed Scopus (1025) Google Scholar). The SAPKs are activated by at least two MEKs, SAPK/ERK kinase-1 (SEK1, also called MAPK-kinase (MKK)-4) and MKK7 (27Sánchez I. Hughes R.T. Mayer B.J. Yee K. Woodgett J.R. Avruch J. Kyriakis J.M. Zon L.I. Nature. 1994; 372: 794-798Crossref PubMed Scopus (916) Google Scholar, 28Dérijard B. Raingeaud J. Barrett T. Wu L.-H. Han J. Ulevitch R.J. Davis R.J. Science. 1995; 267: 682-685Crossref PubMed Scopus (1413) Google Scholar, 29Tournier C. Whitmarsh A.J. Cavanagh J. Barrett T. Davis R.J. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 7337-7342Crossref PubMed Scopus (340) Google Scholar, 30Holland P.M. Suzanne M. Campbell J.S. Noselli S. Cooper J.A. J. Biol. Chem. 1997; 272: 24994-24998Abstract Full Text Full Text PDF PubMed Scopus (153) Google Scholar). Likewise, p38 is activated by at least two MEKs, MKK3 and MKK6 (28Dérijard B. Raingeaud J. Barrett T. Wu L.-H. Han J. Ulevitch R.J. Davis R.J. Science. 1995; 267: 682-685Crossref PubMed Scopus (1413) Google Scholar, 31Raingeaud J. Whitmarsh A.J. Barett T. Dérijard B. Davis R.J. Mol. Cell. Biol. 1996; 16: 1247-1255Crossref PubMed Scopus (1147) Google Scholar). MAPKKKs upstream of the SAPKs and p38s are highly divergent (26Kyriakis J.M. Avruch J. J. Biol. Chem. 1996; 271: 24313-24316Abstract Full Text Full Text PDF PubMed Scopus (1025) Google Scholar). These include MAPK/ERK kinase kinases (MEKKs) 1–4, TGF-β-activated kinase-1, apoptosis signal-regulating kinase-1, Tpl-2/Cot, and the mixed lineage kinases (26Kyriakis J.M. Avruch J. J. Biol. Chem. 1996; 271: 24313-24316Abstract Full Text Full Text PDF PubMed Scopus (1025) Google Scholar, 32Yan M. Dai T. Deak J.C. Kyriakis J.M. Zon L.I. Woodgett J.R. Templeton D.J. Nature. 1994; 372: 798-800Crossref PubMed Scopus (658) Google Scholar, 33Xu S. Robbins D.J. Christerson L.B. English J.M. Vanderbilt C. Cobb M.H. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 5291-5295Crossref PubMed Scopus (122) Google Scholar, 34Gerwins P. Blank J.L. Johnson G.L. J. Biol. Chem. 1997; 272: 8288-8295Abstract Full Text Full Text PDF PubMed Scopus (214) Google Scholar, 35Takekawa M. Posas F. Saito H. EMBO J. 1997; 16: 4973-4982Crossref PubMed Scopus (157) Google Scholar, 36Ichijo H. Nishida E. Irie K. ten Dijke P. Saitoh M. Moriguchi T. Takagi M. Matsumoto K. Miyazono K. Gotoh Y. Science. 1997; 275: 90-94Crossref PubMed Scopus (2027) Google Scholar, 37Yamaguchi K. Shirakabi K. Shibuya H. Irie K. Oishi I. Ueno N. Taniguchi T. Nishida E. Matsumoto K. Science. 1995; 270: 2008-2011Crossref PubMed Scopus (1175) Google Scholar, 38Salmerón A. Ahmad T.B. Carlile G.W. Pappin D. Narsimhan R.P. Ley S.C. EMBO J. 1996; 15: 817-826Crossref PubMed Scopus (269) Google Scholar, 39Rana A. Gallo K. Godowski P. Hirai S. Ohno S. Zon L. Kyriakis J.M. Avruch J. J. Biol. Chem. 1996; 271: 19025-19028Abstract Full Text Full Text PDF PubMed Scopus (206) Google Scholar). With the exception of MEKK1 and, to a lesser extent, the mixed lineage kinases, which are selective for the SAPKs, each of these MAPKKKs can activate multiple MAPK pathways (26Kyriakis J.M. Avruch J. J. Biol. Chem. 1996; 271: 24313-24316Abstract Full Text Full Text PDF PubMed Scopus (1025) Google Scholar,32Yan M. Dai T. Deak J.C. Kyriakis J.M. Zon L.I. Woodgett J.R. Templeton D.J. Nature. 1994; 372: 798-800Crossref PubMed Scopus (658) Google Scholar, 33Xu S. Robbins D.J. Christerson L.B. English J.M. Vanderbilt C. Cobb M.H. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 5291-5295Crossref PubMed Scopus (122) Google Scholar, 34Gerwins P. Blank J.L. Johnson G.L. J. Biol. Chem. 1997; 272: 8288-8295Abstract Full Text Full Text PDF PubMed Scopus (214) Google Scholar, 35Takekawa M. Posas F. Saito H. EMBO J. 1997; 16: 4973-4982Crossref PubMed Scopus (157) Google Scholar, 36Ichijo H. Nishida E. Irie K. ten Dijke P. Saitoh M. Moriguchi T. Takagi M. Matsumoto K. Miyazono K. Gotoh Y. Science. 1997; 275: 90-94Crossref PubMed Scopus (2027) Google Scholar, 37Yamaguchi K. Shirakabi K. Shibuya H. Irie K. Oishi I. Ueno N. Taniguchi T. Nishida E. Matsumoto K. Science. 1995; 270: 2008-2011Crossref PubMed Scopus (1175) Google Scholar, 38Salmerón A. Ahmad T.B. Carlile G.W. Pappin D. Narsimhan R.P. Ley S.C. EMBO J. 1996; 15: 817-826Crossref PubMed Scopus (269) Google Scholar, 39Rana A. Gallo K. Godowski P. Hirai S. Ohno S. Zon L. Kyriakis J.M. Avruch J. J. Biol. Chem. 1996; 271: 19025-19028Abstract Full Text Full Text PDF PubMed Scopus (206) Google Scholar). Mammalian protein kinases homologous to S. cerevisiae SPS1have been implicated in the selective activation of the SAPKs, possibly through the direct recruitment of MAPKKKs (40Pombo C.M. Kehrl J.H. Sánchez I. Katz P. Avruch J. Zon L.I. Woodgett J.R. Force T. Kyriakis J.M. Nature. 1995; 377: 750-754Crossref PubMed Scopus (204) Google Scholar, 41Kiefer F. Tibbles L.A. Anafi M. Janssen A. Zanke B.W. Lassam N. Pawson T. Woodgett J.R. Iscove N.R. EMBO J. 1996; 15: 7013-7025Crossref PubMed Scopus (199) Google Scholar, 42Su Y.-C. Han J. Xu S. Cobb M. Skolnik E.Y. EMBO J. 1997; 16: 1279-1290Crossref PubMed Scopus (218) Google Scholar, 43Shi C.-S. Kehrl J.H. J. Biol. Chem. 1997; 272: 32102-32107Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 44Tung R.M. Blenis J. Oncogene. 1997; 14: 653-659Crossref PubMed Scopus (66) Google Scholar, 45Diener K. Wang X.S. Chen C. Meyer C.F. Keesler G. Zukowski M. Tan T.-H. Yao Z. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 9687-9692Crossref PubMed Scopus (118) Google Scholar). Germinal center kinase (GCK) was the first mammalian SPS1 shown to activate the SAPK pathway (40Pombo C.M. Kehrl J.H. Sánchez I. Katz P. Avruch J. Zon L.I. Woodgett J.R. Force T. Kyriakis J.M. Nature. 1995; 377: 750-754Crossref PubMed Scopus (204) Google Scholar). Endogenous GCK is activated by TNF (40Pombo C.M. Kehrl J.H. Sánchez I. Katz P. Avruch J. Zon L.I. Woodgett J.R. Force T. Kyriakis J.M. Nature. 1995; 377: 750-754Crossref PubMed Scopus (204) Google Scholar). Subsequently, four additional SPS1 homologues were shown to activate co-expressed SAPK. None of these can activate p38 or ERK1/2in vivo (40Pombo C.M. Kehrl J.H. Sánchez I. Katz P. Avruch J. Zon L.I. Woodgett J.R. Force T. Kyriakis J.M. Nature. 1995; 377: 750-754Crossref PubMed Scopus (204) Google Scholar, 41Kiefer F. Tibbles L.A. Anafi M. Janssen A. Zanke B.W. Lassam N. Pawson T. Woodgett J.R. Iscove N.R. EMBO J. 1996; 15: 7013-7025Crossref PubMed Scopus (199) Google Scholar, 42Su Y.-C. Han J. Xu S. Cobb M. Skolnik E.Y. EMBO J. 1997; 16: 1279-1290Crossref PubMed Scopus (218) Google Scholar, 43Shi C.-S. Kehrl J.H. J. Biol. Chem. 1997; 272: 32102-32107Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 44Tung R.M. Blenis J. Oncogene. 1997; 14: 653-659Crossref PubMed Scopus (66) Google Scholar, 45Diener K. Wang X.S. Chen C. Meyer C.F. Keesler G. Zukowski M. Tan T.-H. Yao Z. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 9687-9692Crossref PubMed Scopus (118) Google Scholar). Despite the clear cut activation of AP-1, the SAPKs, p38s, and GCK by TNF, and the recent finding that TRAF2 is required for TNF activation of SAPK (46Liu Z.-g. Hsu H. Goeddel D.V. Karin M. Cell. 1996; 87: 565-576Abstract Full Text Full Text PDF PubMed Scopus (1783) Google Scholar, 47Natoli G. Costanzo A. Ianni A. Templeton D.J. Woodgett J.R. Balsano C. Levrero M. Science. 1997; 275: 200-203Crossref PubMed Scopus (415) Google Scholar, 48Yeh W.-C. Shahinian A. Speiser D. Kraunus J. Billia F. Wakeham A. de la Pompa J.L. Ferrick D. Hum B. Iscove N. Ohashi P. Rothe M. Goeddel D.V. Mak T.W. Immunity. 1997; 7: 715-725Abstract Full Text Full Text PDF PubMed Scopus (712) Google Scholar, 49Lee S.Y. Reichlin A. Santana A. Sokol K.A. Nussenzweig M.C. Choi Y. Immunity. 1997; 7: 703-713Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), the molecular mechanisms coupling the TNFR signaling complex to SAPK and p38 have not been well characterized. We report herein that the GCK COOH-terminal regulatory domain can bind both TRAF2 and MEKK1 and that MEKK1 is a likely physiologic target of GCK. The TRAF2-GCK and GCK-MEKK1 interactions effectively couple one SAPK regulatory pathway to TNFR1. We also show that RIP can activate both the SAPK and p38 pathways in vivo; and our results indicate that RIP is required for TRAF2 activation of p38. The RIP intermediate domain is both necessary and sufficient for SAPK and p38 activation; and we demonstrate that the RIP intermediate domain, when overexpressed, can associate in vivo with an endogenous MAPKKK activity. This complex can be employed in assays to reconstitute the p38 pathway in vitro. We conclude from these results that GCK and RIP are proximal components in redundant, bifurcating mechanisms for TRAF2-mediated SAPK activation; by contrast, RIP is a dominant effector for TRAF2 activation of p38. In addition, we propose that both GCK and RIP elicit SAPK and p38 activation by binding, and possibly triggering activation of MAPKKKs. We used the following vectors: pEBG, which expresses a GST-tagged polypeptide (27Sánchez I. Hughes R.T. Mayer B.J. Yee K. Woodgett J.R. Avruch J. Kyriakis J.M. Zon L.I. Nature. 1994; 372: 794-798Crossref PubMed Scopus (916) Google Scholar), pCMV5, which expresses an M2-FLAG-tagged polypeptide, pMT3, which expresses an HA-tagged polypeptide, pCDM12, which expresses a Myc-tagged polypeptide and pEBV, which expresses an untagged polypeptide. pMT3-SAPK-p46β1 and p38α have been described (18Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.A. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2414) Google Scholar, 40Pombo C.M. Kehrl J.H. Sánchez I. Katz P. Avruch J. Zon L.I. Woodgett J.R. Force T. Kyriakis J.M. Nature. 1995; 377: 750-754Crossref PubMed Scopus (204) Google Scholar). GCK and MEKK1 constructs were prepared by polymerase chain reaction amplification and cloning according to standard methods (50Sambrook J. Fritsch E.F. Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY1989Google Scholar). RIP constructs were prepared as described (51Ting A.T. Pimentel-Muiños F.-X. Seed B. EMBO J. 1996; 15: 6189-6195Crossref PubMed Scopus (469) Google Scholar). Human TRAF2 was amplified by polymerase chain reaction from human T cell cDNA. 293 cells were cultivated in 10-cm dishes and, as shown in the figures, were co-transfected (by the CaPO4 method) with either 0.3 μg of pCMV5-GCK, 0.3 μg of pEBG-GCK (unless indicated), 7 μg of the indicated pCDM12-Myc-RIP or 7 μg of pEBV-TRAF2 and 1 μg of either pMT3-SAPK-p46β1 or p38α. As necessary, transfected DNA levels were balanced with empty plasmid. After 18 h, SAPK and p38 were immunoprecipitated with anti-HA and assayed, respectively, for c-Jun or ATF2 kinase activity as described (18Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.A. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2414) Google Scholar). GCK was assayed as described (38Salmerón A. Ahmad T.B. Carlile G.W. Pappin D. Narsimhan R.P. Ley S.C. EMBO J. 1996; 15: 817-826Crossref PubMed Scopus (269) Google Scholar, 52Katz P. Whalen G. Kehrl J.H. J. Biol. Chem. 1994; 269: 16802-16809Abstract Full Text PDF PubMed Google Scholar). For SEK1 phosphorylation assays, cells were transfected with 5 μg of pEBG-GCK-CTD or pEBG and either 5 μg of pCMV5-MEKK1 or pCMV5. GST polypeptides were isolated as described (27Sánchez I. Hughes R.T. Mayer B.J. Yee K. Woodgett J.R. Avruch J. Kyriakis J.M. Zon L.I. Nature. 1994; 372: 794-798Crossref PubMed Scopus (916) Google Scholar). GST-SEK1-KR was purified from transfected 293 cells as described below for MKK6 and p38. Phosphorylation of GST-SEK1-KR was performed as in Yan et al. (32Yan M. Dai T. Deak J.C. Kyriakis J.M. Zon L.I. Woodgett J.R. Templeton D.J. Nature. 1994; 372: 798-800Crossref PubMed Scopus (658) Google Scholar). For dominant inhibitory experiments, 3 μg of pCMV5-MEKK1 (817–1340) were co-transfected along with 0.3 μg of pEBG-GCK and 1 μg of pMT3 SAPK. 293 cells were transfected by the CaPO4 method. Unless indicated, 1–5 μg of plasmid was used. As necessary, transfected DNA levels were balanced with empty plasmid. Immunoprecipitations and GST pulldowns were performed as described (18Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.A. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2414) Google Scholar, 27Sánchez I. Hughes R.T. Mayer B.J. Yee K. Woodgett J.R. Avruch J. Kyriakis J.M. Zon L.I. Nature. 1994; 372: 794-798Crossref PubMed Scopus (916) Google Scholar) with the following modifications. Lysis buffer was 20 mm Tris, pH 7.4, 2 mm EGTA, 10 mm MgCl2, 0.1% (v/v) β-mercaptoethanol, 1% (w/v) Triton X-100, 100 μm phenylmethylsulfonyl fluoride, 10 kallekrein inhibiting units/ml aprotinin, 2 μmleupeptin, 2 μm pepstatin. Immunoprecipitates were washed twice with lysis buffer, twice with high stringency wash buffer (lysis buffer prepared with 0.1% (w/v) Triton X-100 and containing 1m LiCl) and twice with wash buffer (no LiCl). Immunoblotting was performed using the enhanced chemiluminescence method (Amersham) according to the manufacturer's instructions. Anti-FLAG antibody was from Kodak, anti-GST and MEKK1 antibodies were from Upstate Biotechnology, anti-TRAF2 antibody was from Santa Cruz. For in vitro binding of GCK to MEKK1, 293 cells were transfected with 5 μg of pCMV5-M2-FLAG-MEKK1 (817–1221). After 20 h, the MEKK1 was immunoprecipitated and washed under stringent conditions as described above. To the beads were added 10 ng of GST or GST-GCK which had been purified from transfected cell extracts as described below. As controls, mock immunoprecipitations were prepared using extracts of cells transfected with empty vector. The GCK was allowed to incubate with the MEKK1 at which time the beads were washed under stringent conditions as described above. To the beads were added kinase assay buffer (20 mm Tris, pH 7.4, 1 mmEGTA, 1 mm dithiothreitol, 0.1% (w/v) Triton X-100) containing MgCl2 (10 mm) and [γ-32P]ATP (100 μm). Autophosphorylation/phosphorylation was allowed to proceed for 20 min at 30 °C. For mock immunoprecipitations, the supernatants containing GST-GCK were removed and allowed to autophosphorylate as above. GST, GST-p38, -SEK1-K129R, and -MKK6 were purified from 7–10 plates of 293 cells transfected with the relevant pEBG constructs. GST-GCK was purified from 20 plates of transfected cells. The purification protocol was the same for all four proteins. Cells were lysed by Dounce homogenization in 5 ml of lysis buffer (20 mm Hepes, pH 7.4, 2 mm EGTA, 1 mmdithiothreitol, 250 mm sucrose, 200 μmphenylmethylsulfonyl fluoride, 2 μm pepstatin, 10 kallekrein inhibiting units of aprotinin). Lysates were cleared by centrifugation (100,000 × g, 30 min) and Triton X-100 (0.1% w/v) was added to the supernatants. Supernatants were then loaded onto 250-μl glutathione-agarose columns pre-equilibrated with column buffer (lysis buffer prepared without sucrose and with 0.1% (w/v) Triton X-100). Columns were washed twice with column buffer, three times with high stringency column wash buffer (column buffer containing 1 m LiCl), and twice again with column buffer. Bound proteins were eluted with 100 mm glutathione in column buffer and the purified proteins dialyzed into storage buffer (column buffer containing 50% (v/v) glycerol). Proteins prepared in this manner were stable for up to 6 months at −20 °C. GST-ATF2(4–94) or GST-c-Jun(1–135) were expressed in bacteria and purified as described (18Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.A. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2414) Google Scholar). For activation assays, each of the Myc-RIP constructs was immunoprecipitated from at least seven 10-cm plates of 293 cells expressing the relevant pCDM12 construct. Cells were transfected with 10 μg of RIP plasmid for these experiments. The lysis and immunoprecipitation procedure have been described (Ref. 18Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.A. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2414) Google Scholar and see above). Immune complexes were washed at high stringency as described above for the co-immunoprecipitation experiments. 20-μl RIP beads or blank beads (prepared from mock immunoprecipitations performed with nonimmune serum) were suspended in a total of 40 μl of assay buffer (20 mm Tris, pH 7.4, 2 mm EGTA, 1 mm dithiothreitol, 0.1% (w/v) Triton X-100). To this were added 20 μl of assay buffer containing 6 ng of inactive GST-MKK6 or an equivalent amount of MKK6/p38 storage buffer. Reactions were started with the addition of 15 μl of [32P]ATP/MgCl2 mixture to give final concentrations of 100 μm [32P]ATP and 10 mm MgCl2. The reactions were allowed to proceed for 30 min at 30 °C. Reaction tubes were then centrifuged and 30 μl" @default.
- W1968160256 created "2016-06-24" @default.
- W1968160256 creator A5002801100 @default.
- W1968160256 creator A5057092922 @default.
- W1968160256 creator A5067673954 @default.
- W1968160256 creator A5068575679 @default.
- W1968160256 date "1998-08-01" @default.
- W1968160256 modified "2023-10-16" @default.
- W1968160256 title "Tumor Necrosis Factor Signaling to Stress-activated Protein Kinase (SAPK)/Jun NH2-terminal Kinase (JNK) and p38" @default.
- W1968160256 cites W135294775 @default.
- W1968160256 cites W1513954632 @default.
- W1968160256 cites W1555692789 @default.
- W1968160256 cites W1573926858 @default.
- W1968160256 cites W1586373415 @default.
- W1968160256 cites W161910285 @default.
- W1968160256 cites W1968590447 @default.
- W1968160256 cites W1968606500 @default.
- W1968160256 cites W1972414794 @default.
- W1968160256 cites W1973680986 @default.
- W1968160256 cites W1979595147 @default.
- W1968160256 cites W1982390204 @default.
- W1968160256 cites W1983643278 @default.
- W1968160256 cites W1984113136 @default.
- W1968160256 cites W1984665850 @default.
- W1968160256 cites W1984903682 @default.
- W1968160256 cites W1986663284 @default.
- W1968160256 cites W1996068610 @default.
- W1968160256 cites W1997681070 @default.
- W1968160256 cites W1997966434 @default.
- W1968160256 cites W1998487776 @default.
- W1968160256 cites W2001399809 @default.
- W1968160256 cites W2002282120 @default.
- W1968160256 cites W2005792688 @default.
- W1968160256 cites W2006528333 @default.
- W1968160256 cites W2007986629 @default.
- W1968160256 cites W2008669399 @default.
- W1968160256 cites W2013044374 @default.
- W1968160256 cites W2013052118 @default.
- W1968160256 cites W2020466484 @default.
- W1968160256 cites W2020675675 @default.
- W1968160256 cites W2026951979 @default.
- W1968160256 cites W2027998343 @default.
- W1968160256 cites W2030102504 @default.
- W1968160256 cites W2032514624 @default.
- W1968160256 cites W2032666422 @default.
- W1968160256 cites W2034580062 @default.
- W1968160256 cites W2035980889 @default.
- W1968160256 cites W2036224418 @default.
- W1968160256 cites W2036528355 @default.
- W1968160256 cites W2047263793 @default.
- W1968160256 cites W2049378629 @default.
- W1968160256 cites W2051538397 @default.
- W1968160256 cites W2054363543 @default.
- W1968160256 cites W2061013276 @default.
- W1968160256 cites W2064558057 @default.
- W1968160256 cites W2065114189 @default.
- W1968160256 cites W2065257477 @default.
- W1968160256 cites W2074725588 @default.
- W1968160256 cites W2085837280 @default.
- W1968160256 cites W2089372467 @default.
- W1968160256 cites W2089394364 @default.
- W1968160256 cites W2091695331 @default.
- W1968160256 cites W2147678437 @default.
- W1968160256 cites W2152445095 @default.
- W1968160256 cites W2157825598 @default.
- W1968160256 cites W2726781229 @default.
- W1968160256 doi "https://doi.org/10.1074/jbc.273.35.22681" @default.
- W1968160256 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9712898" @default.
- W1968160256 hasPublicationYear "1998" @default.
- W1968160256 type Work @default.
- W1968160256 sameAs 1968160256 @default.
- W1968160256 citedByCount "259" @default.
- W1968160256 countsByYear W19681602562012 @default.
- W1968160256 countsByYear W19681602562013 @default.
- W1968160256 countsByYear W19681602562014 @default.
- W1968160256 countsByYear W19681602562015 @default.
- W1968160256 countsByYear W19681602562016 @default.
- W1968160256 countsByYear W19681602562017 @default.
- W1968160256 countsByYear W19681602562018 @default.
- W1968160256 countsByYear W19681602562019 @default.
- W1968160256 countsByYear W19681602562020 @default.
- W1968160256 countsByYear W19681602562021 @default.
- W1968160256 countsByYear W19681602562022 @default.
- W1968160256 crossrefType "journal-article" @default.
- W1968160256 hasAuthorship W1968160256A5002801100 @default.
- W1968160256 hasAuthorship W1968160256A5057092922 @default.
- W1968160256 hasAuthorship W1968160256A5067673954 @default.
- W1968160256 hasAuthorship W1968160256A5068575679 @default.
- W1968160256 hasBestOaLocation W19681602561 @default.
- W1968160256 hasConcept C124160383 @default.
- W1968160256 hasConcept C137361374 @default.
- W1968160256 hasConcept C159479382 @default.
- W1968160256 hasConcept C161238802 @default.
- W1968160256 hasConcept C184235292 @default.
- W1968160256 hasConcept C185592680 @default.
- W1968160256 hasConcept C2779664074 @default.
- W1968160256 hasConcept C31258907 @default.
- W1968160256 hasConcept C41008148 @default.