Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968202271> ?p ?o ?g. }
- W1968202271 endingPage "251" @default.
- W1968202271 startingPage "221" @default.
- W1968202271 abstract "Slip occurs in the flow of two-phase systems because of the displacement of the disperse phase away from solid boundaries. This arises from steric, hydrodynamic, viscoelastic and chemical forces and constraints acting on the disperse phase immediately adjacent to the walls. The enrichment of the boundary near the wall with the continuous (and usually low-viscosity) phase means that any flow of the fluid over the boundary is easier because of the lubrication effect. Because this effect is usually confined to a very narrow layer — with typical thickness of 0.1–10 μm—it so resembles the slip of solids over surfaces that it has historically been given the same terminology. The restoring force for all the forces that cause an increase in concentration is usually osmotic, and this will always limit the effective slip. In dilute systems, concentration gradients can be present over relatively large distances out from walls, giving what might be interpreted on an overall basis as a thick solvent-only layer. However, as the concentration of the system increases, the layer gets thinner and thinner because it is more difficult to create with the large reverse osmotic force present. However, the enormous increase in the bulk viscosity with increase in concentration means that although thinner, the layer becomes, paradoxically, even more important. Slip manifests itself in such a way that viscosity measured in different size geometries gives different answers if calculated the normal way — in particular the apparent viscosity decreases with decrease in geometry size (e.g. tube radius). Also, in single flow curves unexpected lower Newtonian plateaus are sometimes seen, with an apparent yield stress at even lower stresses. Sudden breaks in the flow curve can also be seen. Large particles as the disperse phase (remember flocs are large particles), with a large dependence of viscosity on the concentration of the dispersed phase are the circumstances which can give slip, especially if coupled with smooth walls and small flow dimensions. The effect is usually greatest at low speeds/flow rates. When the viscometer walls and particles carry like electrostatic charges and the continuous phase is electrically conducted, slip can be assumed. In many cases we need to characterise the slip effects seen in viscometers because they will also be seen in flow in smooth pipes and condults in manufacturing plants. This is usually done by relating the wall shear stress to a slip velocity using a power-law relationship. When the bulk flow has also been characterized, the flow in real situations can be calculated. To characterise slip, it is necessary to change the size of the geometry, and the results extrapolated to very large size to extract unambigouos bulk-flow and slip data respectively. A number of mathematical manipulations are necessary to retrieve these data. We can make attempts to eliminate slip by altering the physical or chemical character of the walls. This is usually done physically by roughening or profiling, but in the extreme, a vane can be used. This latter geometry has the advantage of being easy to make and clean. In either case—by extrapolation or elimination—we end up with the bulk flow properties. This is important in situations where we are trying to understand the microstructure/flow interactions." @default.
- W1968202271 created "2016-06-24" @default.
- W1968202271 creator A5067014791 @default.
- W1968202271 date "1995-03-01" @default.
- W1968202271 modified "2023-10-11" @default.
- W1968202271 title "A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure" @default.
- W1968202271 cites W1968218015 @default.
- W1968202271 cites W1968564463 @default.
- W1968202271 cites W1972345161 @default.
- W1968202271 cites W1973443193 @default.
- W1968202271 cites W1975424964 @default.
- W1968202271 cites W1983791902 @default.
- W1968202271 cites W1984284753 @default.
- W1968202271 cites W1991559827 @default.
- W1968202271 cites W1991925759 @default.
- W1968202271 cites W1992684067 @default.
- W1968202271 cites W1993923835 @default.
- W1968202271 cites W1997172350 @default.
- W1968202271 cites W1998432804 @default.
- W1968202271 cites W1999423518 @default.
- W1968202271 cites W2001366063 @default.
- W1968202271 cites W2003063145 @default.
- W1968202271 cites W2003755500 @default.
- W1968202271 cites W2006065937 @default.
- W1968202271 cites W2006763687 @default.
- W1968202271 cites W2008719531 @default.
- W1968202271 cites W2015032098 @default.
- W1968202271 cites W2017517555 @default.
- W1968202271 cites W2020390185 @default.
- W1968202271 cites W2024272561 @default.
- W1968202271 cites W2031130848 @default.
- W1968202271 cites W2031872560 @default.
- W1968202271 cites W2032433504 @default.
- W1968202271 cites W2041782478 @default.
- W1968202271 cites W2044419025 @default.
- W1968202271 cites W2045085383 @default.
- W1968202271 cites W2045915539 @default.
- W1968202271 cites W2050273433 @default.
- W1968202271 cites W2056814676 @default.
- W1968202271 cites W2057129505 @default.
- W1968202271 cites W2057471062 @default.
- W1968202271 cites W2058941284 @default.
- W1968202271 cites W2061017937 @default.
- W1968202271 cites W2068894796 @default.
- W1968202271 cites W2069680348 @default.
- W1968202271 cites W2071921315 @default.
- W1968202271 cites W2073523534 @default.
- W1968202271 cites W2073860341 @default.
- W1968202271 cites W2076541084 @default.
- W1968202271 cites W2076811139 @default.
- W1968202271 cites W2081733198 @default.
- W1968202271 cites W2085667127 @default.
- W1968202271 cites W2085988504 @default.
- W1968202271 cites W2088630917 @default.
- W1968202271 cites W2090182670 @default.
- W1968202271 cites W2091527718 @default.
- W1968202271 cites W2092410951 @default.
- W1968202271 cites W2099932278 @default.
- W1968202271 cites W2100094388 @default.
- W1968202271 cites W2104976694 @default.
- W1968202271 cites W2105981521 @default.
- W1968202271 cites W2111435873 @default.
- W1968202271 cites W2112014812 @default.
- W1968202271 cites W2124268744 @default.
- W1968202271 cites W2124935429 @default.
- W1968202271 cites W2132347104 @default.
- W1968202271 cites W2139281681 @default.
- W1968202271 cites W2144244155 @default.
- W1968202271 cites W2144406781 @default.
- W1968202271 cites W2147375674 @default.
- W1968202271 cites W2266496465 @default.
- W1968202271 cites W2316710940 @default.
- W1968202271 cites W2328236977 @default.
- W1968202271 cites W2331964042 @default.
- W1968202271 cites W2507069233 @default.
- W1968202271 cites W2528381731 @default.
- W1968202271 cites W2762621130 @default.
- W1968202271 cites W2983245771 @default.
- W1968202271 cites W4230626733 @default.
- W1968202271 cites W4239829213 @default.
- W1968202271 cites W4244021094 @default.
- W1968202271 cites W1999076445 @default.
- W1968202271 doi "https://doi.org/10.1016/0377-0257(94)01282-m" @default.
- W1968202271 hasPublicationYear "1995" @default.
- W1968202271 type Work @default.
- W1968202271 sameAs 1968202271 @default.
- W1968202271 citedByCount "825" @default.
- W1968202271 countsByYear W19682022712012 @default.
- W1968202271 countsByYear W19682022712013 @default.
- W1968202271 countsByYear W19682022712014 @default.
- W1968202271 countsByYear W19682022712015 @default.
- W1968202271 countsByYear W19682022712016 @default.
- W1968202271 countsByYear W19682022712017 @default.
- W1968202271 countsByYear W19682022712018 @default.
- W1968202271 countsByYear W19682022712019 @default.
- W1968202271 countsByYear W19682022712020 @default.
- W1968202271 countsByYear W19682022712021 @default.
- W1968202271 countsByYear W19682022712022 @default.