Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968349058> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1968349058 endingPage "3360" @default.
- W1968349058 startingPage "3360" @default.
- W1968349058 abstract "We have calculated the 2-point correlation functions ωil(N)=(4/3)〈Si ⋅ Si+l〉 and their averages over i, ωl(N), in the ground state of the 1-dimensional antiferromagnetic Heisenberg model for N=4(2)16 spins. Both periodic (rings) and free-ends (chains) boundary conditions are considered. Surprisingly tight lower and upper bounds have been obtained for ωl(∞) under reasonable assumptions. In addition to showing the rather strong even-l-odd-l alternation in ‖ωl(N)‖, already known, our bounds indicate a smooth behavior in l‖ωl(∞)‖ for l odd and for l even, with, surprisingly, a broad maximum attained within the odd-l values at l≂6 to 8. The bounds obtained from the chain results were essential to seeing this maximum (because the l-values available for given N are larger than for rings). The quantity l‖ωl(N)‖ for chains with fixed N also shows such a maximum, and in addition shows a similar maximum for even l’s. If the trends for large l and N which we have found continue in ωl(∞) and in SN, the structure factor at wave vector π, then finite-size contributions to ωl(N) will have to contribute to the (seemingly) logarithmic divergence of SN as N→∞. We are not aware of any models where a similarly weak divergence shows such a finite-size contribution. Earlier results, including ‖ωl(∞)‖≊A/l for l→∞, gave no hint of the decrease in l‖ωl(∞)‖ described above. Recently ‘‘logarithmic corrections’’ have been mentioned, wherein ‖ωl(∞)‖≊(A/l) (ln l+B)−1. This might be related to the decrease in l‖ωl(∞)‖ which we found. If finite-size corrections are neglected, then this 1/l ln l behavior would predict SN≊ln ln N for N→∞, as opposed to the trend SN∼ln N that we found; continuation of the latter trend would then have to be due entirely to the finite-size contributions. Some insight into various surprising aspects of ωil(N) is gained by considering a single-band model of noninteracting electrons, which is a special case of the Hubbard model, as is the Heisenberg model." @default.
- W1968349058 created "2016-06-24" @default.
- W1968349058 creator A5048067038 @default.
- W1968349058 creator A5075649580 @default.
- W1968349058 creator A5075975430 @default.
- W1968349058 date "1985-04-15" @default.
- W1968349058 modified "2023-10-16" @default.
- W1968349058 title "Ground state of the 1‐dimensional antiferromagnetic Heisenberg model (abstract)" @default.
- W1968349058 cites W1990574621 @default.
- W1968349058 cites W2025451114 @default.
- W1968349058 cites W2580711636 @default.
- W1968349058 doi "https://doi.org/10.1063/1.335098" @default.
- W1968349058 hasPublicationYear "1985" @default.
- W1968349058 type Work @default.
- W1968349058 sameAs 1968349058 @default.
- W1968349058 citedByCount "0" @default.
- W1968349058 crossrefType "journal-article" @default.
- W1968349058 hasAuthorship W1968349058A5048067038 @default.
- W1968349058 hasAuthorship W1968349058A5075649580 @default.
- W1968349058 hasAuthorship W1968349058A5075975430 @default.
- W1968349058 hasConcept C112675119 @default.
- W1968349058 hasConcept C114614502 @default.
- W1968349058 hasConcept C121332964 @default.
- W1968349058 hasConcept C134306372 @default.
- W1968349058 hasConcept C138885662 @default.
- W1968349058 hasConcept C155355069 @default.
- W1968349058 hasConcept C174084160 @default.
- W1968349058 hasConcept C182310444 @default.
- W1968349058 hasConcept C207390915 @default.
- W1968349058 hasConcept C26873012 @default.
- W1968349058 hasConcept C2778870898 @default.
- W1968349058 hasConcept C33923547 @default.
- W1968349058 hasConcept C37914503 @default.
- W1968349058 hasConcept C39927690 @default.
- W1968349058 hasConcept C41895202 @default.
- W1968349058 hasConcept C62520636 @default.
- W1968349058 hasConcept C69523127 @default.
- W1968349058 hasConcept C77553402 @default.
- W1968349058 hasConceptScore W1968349058C112675119 @default.
- W1968349058 hasConceptScore W1968349058C114614502 @default.
- W1968349058 hasConceptScore W1968349058C121332964 @default.
- W1968349058 hasConceptScore W1968349058C134306372 @default.
- W1968349058 hasConceptScore W1968349058C138885662 @default.
- W1968349058 hasConceptScore W1968349058C155355069 @default.
- W1968349058 hasConceptScore W1968349058C174084160 @default.
- W1968349058 hasConceptScore W1968349058C182310444 @default.
- W1968349058 hasConceptScore W1968349058C207390915 @default.
- W1968349058 hasConceptScore W1968349058C26873012 @default.
- W1968349058 hasConceptScore W1968349058C2778870898 @default.
- W1968349058 hasConceptScore W1968349058C33923547 @default.
- W1968349058 hasConceptScore W1968349058C37914503 @default.
- W1968349058 hasConceptScore W1968349058C39927690 @default.
- W1968349058 hasConceptScore W1968349058C41895202 @default.
- W1968349058 hasConceptScore W1968349058C62520636 @default.
- W1968349058 hasConceptScore W1968349058C69523127 @default.
- W1968349058 hasConceptScore W1968349058C77553402 @default.
- W1968349058 hasIssue "8" @default.
- W1968349058 hasLocation W19683490581 @default.
- W1968349058 hasOpenAccess W1968349058 @default.
- W1968349058 hasPrimaryLocation W19683490581 @default.
- W1968349058 hasRelatedWork W1968349058 @default.
- W1968349058 hasRelatedWork W1969072092 @default.
- W1968349058 hasRelatedWork W2467398241 @default.
- W1968349058 hasRelatedWork W2545591807 @default.
- W1968349058 hasRelatedWork W2792477981 @default.
- W1968349058 hasRelatedWork W2963184730 @default.
- W1968349058 hasRelatedWork W3093123555 @default.
- W1968349058 hasRelatedWork W4232147566 @default.
- W1968349058 hasRelatedWork W4293360560 @default.
- W1968349058 hasRelatedWork W9899998 @default.
- W1968349058 hasVolume "57" @default.
- W1968349058 isParatext "false" @default.
- W1968349058 isRetracted "false" @default.
- W1968349058 magId "1968349058" @default.
- W1968349058 workType "article" @default.