Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968439208> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W1968439208 abstract "This paper examines the Kernel Principal Component Analysis (KPCA) feature detection and classification for underwater images. In Underwater images the numbers of distortion occurred are blurring of image, illumination of light and rotation of angle, noise etc. Features are normally extracted by the method called SIFT (Scale Invariant Feature Transform for underwater images). It is used for extracting distinctive invariant features from images that can be invariant to image scale and rotation. It is used in image mosaic, recognition, retrieval and etc. where PCA-SIFT (Principal Component Analysis-Scale Invariant Feature Transform) is also used for dimension reduction and feature detection for underwater images. In this paper we propose a method by combining KPCA and SIFT together called KPCA-SIFT feature detection for underwater images. It is well suited for blur, illumination change and rotation of the input image. When apply PCA to the normalized gradient patch it reduces the dimension of the feature extracted. The parameters used for evaluation are Precision Vs Recall curve and the parameter like elapsed time, sigma value and threshold value. PNN classification is used for underwater images. The proposed method gives desirable results with respect to parameters like Roc curve, Precision Vs Recall, Elapsed time and sigma value. It is more robust and distinctive image deformation and more compact. with increased accuracy and faster matching than the PCA SIFT and SIFT algorithms." @default.
- W1968439208 created "2016-06-24" @default.
- W1968439208 creator A5045945977 @default.
- W1968439208 creator A5047715090 @default.
- W1968439208 creator A5074146457 @default.
- W1968439208 date "2010-10-01" @default.
- W1968439208 modified "2023-10-16" @default.
- W1968439208 title "Kernel Principal Component Analysis feature detection and classification for underwater images" @default.
- W1968439208 cites W1526034937 @default.
- W1968439208 cites W2131846894 @default.
- W1968439208 cites W2142422094 @default.
- W1968439208 cites W2144414190 @default.
- W1968439208 cites W2145072179 @default.
- W1968439208 cites W2149646227 @default.
- W1968439208 cites W2150434641 @default.
- W1968439208 cites W2151103935 @default.
- W1968439208 cites W2168314614 @default.
- W1968439208 doi "https://doi.org/10.1109/cisp.2010.5646932" @default.
- W1968439208 hasPublicationYear "2010" @default.
- W1968439208 type Work @default.
- W1968439208 sameAs 1968439208 @default.
- W1968439208 citedByCount "10" @default.
- W1968439208 countsByYear W19684392082013 @default.
- W1968439208 countsByYear W19684392082014 @default.
- W1968439208 countsByYear W19684392082016 @default.
- W1968439208 countsByYear W19684392082017 @default.
- W1968439208 countsByYear W19684392082018 @default.
- W1968439208 countsByYear W19684392082019 @default.
- W1968439208 countsByYear W19684392082021 @default.
- W1968439208 crossrefType "proceedings-article" @default.
- W1968439208 hasAuthorship W1968439208A5045945977 @default.
- W1968439208 hasAuthorship W1968439208A5047715090 @default.
- W1968439208 hasAuthorship W1968439208A5074146457 @default.
- W1968439208 hasConcept C114614502 @default.
- W1968439208 hasConcept C122280245 @default.
- W1968439208 hasConcept C12267149 @default.
- W1968439208 hasConcept C138885662 @default.
- W1968439208 hasConcept C153180895 @default.
- W1968439208 hasConcept C154945302 @default.
- W1968439208 hasConcept C182335926 @default.
- W1968439208 hasConcept C190470478 @default.
- W1968439208 hasConcept C27438332 @default.
- W1968439208 hasConcept C2776401178 @default.
- W1968439208 hasConcept C31972630 @default.
- W1968439208 hasConcept C33923547 @default.
- W1968439208 hasConcept C37914503 @default.
- W1968439208 hasConcept C41008148 @default.
- W1968439208 hasConcept C41895202 @default.
- W1968439208 hasConcept C52622490 @default.
- W1968439208 hasConcept C61265191 @default.
- W1968439208 hasConcept C74193536 @default.
- W1968439208 hasConceptScore W1968439208C114614502 @default.
- W1968439208 hasConceptScore W1968439208C122280245 @default.
- W1968439208 hasConceptScore W1968439208C12267149 @default.
- W1968439208 hasConceptScore W1968439208C138885662 @default.
- W1968439208 hasConceptScore W1968439208C153180895 @default.
- W1968439208 hasConceptScore W1968439208C154945302 @default.
- W1968439208 hasConceptScore W1968439208C182335926 @default.
- W1968439208 hasConceptScore W1968439208C190470478 @default.
- W1968439208 hasConceptScore W1968439208C27438332 @default.
- W1968439208 hasConceptScore W1968439208C2776401178 @default.
- W1968439208 hasConceptScore W1968439208C31972630 @default.
- W1968439208 hasConceptScore W1968439208C33923547 @default.
- W1968439208 hasConceptScore W1968439208C37914503 @default.
- W1968439208 hasConceptScore W1968439208C41008148 @default.
- W1968439208 hasConceptScore W1968439208C41895202 @default.
- W1968439208 hasConceptScore W1968439208C52622490 @default.
- W1968439208 hasConceptScore W1968439208C61265191 @default.
- W1968439208 hasConceptScore W1968439208C74193536 @default.
- W1968439208 hasLocation W19684392081 @default.
- W1968439208 hasOpenAccess W1968439208 @default.
- W1968439208 hasPrimaryLocation W19684392081 @default.
- W1968439208 hasRelatedWork W1488165778 @default.
- W1968439208 hasRelatedWork W1992961908 @default.
- W1968439208 hasRelatedWork W2097251644 @default.
- W1968439208 hasRelatedWork W2103444992 @default.
- W1968439208 hasRelatedWork W2110459882 @default.
- W1968439208 hasRelatedWork W2113853643 @default.
- W1968439208 hasRelatedWork W2118859668 @default.
- W1968439208 hasRelatedWork W2352079147 @default.
- W1968439208 hasRelatedWork W2361949315 @default.
- W1968439208 hasRelatedWork W4226226125 @default.
- W1968439208 isParatext "false" @default.
- W1968439208 isRetracted "false" @default.
- W1968439208 magId "1968439208" @default.
- W1968439208 workType "article" @default.