Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968448561> ?p ?o ?g. }
- W1968448561 endingPage "281" @default.
- W1968448561 startingPage "275" @default.
- W1968448561 abstract "Investigations during the last twenty-five years have demonstrated that the astronomically related 19, 23 and 41-kyr quasi-periodicities actually occur in long records of the Quaternary climate. But the same investigations identified also the largest climatic cycle as being about 100-kyr long. This cycle, the most striking feature of the Quaternary paleoclimate records, is characterized by long glacial periods followed by a short interglacial (∼ 10 to 15 kyr long). Different sources for this so-called 100-kyr cycle have been found in the astronomical parameters and in the insolation itself. The most popular astronomical one is certainly the eccentricity with the largest spectral components around 100-kyr being 94 945, 123 297, 99 590 and 131 248 years (Berger, 1978). For insolation, it is known that there is only a very weak signal around 100-kyr coming from eccentricity itself. Moreover, the 100-kyr signal in eccentricity is fading away in the upper Pleistocene, at the same time that it appears to be stronger and stronger in paleoclimate records. Therefore, eccentricity cannot be related to either the orbital forcing or to the climate response by any simple linear mechanism. Actually, the variance components centered near the 100-kyr cycle seem to be in phase with the eccentricity cycle, but its exceptional strength in the climate record demands a non-linear amplification. It was already suggested that this can be done by the ice sheet (Imbrie and Imbrie, 1980), the carbon cycle (Shackleton, 2000) and/or the ocean circulation (Imbrie et al., 1993), all arguments which imply that climate model must be used to test the origin of this 100-kyr cycle in paleoclimate records. Such a model has been developed in Louvain-la-Neuve for the Northern Hemisphere and used to perform sensitivity analyses to the astronomically-driven insolation changes and to the atmospheric CO2 concentration over the Quaternary. Assuming a CO2 concentration decreasing linearly from 320 ppmv at 3 Myr BP (late Pliocene) to 200 ppmv at the Last Glacial Maximum, the model simulates the intensification of glaciation around 2.75 Myr BP, the late Pliocene–early Pleistocene 41-kyr cycle, the emergence of the 100-kyr cycle around 900 kyr BP, and the glacial–interglacial cycles of the last 600 kyr (Berger and Loutre, 2004). Simulations with different CO2 reconstructions over the last 1 Myr have confirmed that the model can sustain the glacial–interglacial cycles of the late Pleistocene (Berger et al., 2004). Although the model results agree pretty well with the reconstruction in phase and amplitude over the last 400 kyr, before MIS-11 it neither keeps enough ice during the interglacials nor produces the reduced amplitude of the glacial–interglacial cycles as shown in deep-sea (Imbrie et al., 1984) and ice cores (EPICA, 2004)." @default.
- W1968448561 created "2016-06-24" @default.
- W1968448561 creator A5006109000 @default.
- W1968448561 creator A5087613142 @default.
- W1968448561 date "2010-07-01" @default.
- W1968448561 modified "2023-09-23" @default.
- W1968448561 title "Modeling the 100-kyr glacial–interglacial cycles" @default.
- W1968448561 cites W1531643369 @default.
- W1968448561 cites W1608178911 @default.
- W1968448561 cites W1631559605 @default.
- W1968448561 cites W1965209235 @default.
- W1968448561 cites W1970983096 @default.
- W1968448561 cites W1973422613 @default.
- W1968448561 cites W1977770432 @default.
- W1968448561 cites W1979588291 @default.
- W1968448561 cites W1980401510 @default.
- W1968448561 cites W1980922211 @default.
- W1968448561 cites W1984192025 @default.
- W1968448561 cites W1984380587 @default.
- W1968448561 cites W1988602837 @default.
- W1968448561 cites W2000444336 @default.
- W1968448561 cites W2005161733 @default.
- W1968448561 cites W2015476228 @default.
- W1968448561 cites W2019271750 @default.
- W1968448561 cites W2022545034 @default.
- W1968448561 cites W2023899869 @default.
- W1968448561 cites W2026845582 @default.
- W1968448561 cites W2035196709 @default.
- W1968448561 cites W2040453809 @default.
- W1968448561 cites W2047203508 @default.
- W1968448561 cites W2053916046 @default.
- W1968448561 cites W2054182354 @default.
- W1968448561 cites W2057379508 @default.
- W1968448561 cites W2061542637 @default.
- W1968448561 cites W2068389530 @default.
- W1968448561 cites W2069212976 @default.
- W1968448561 cites W2071328669 @default.
- W1968448561 cites W2074430415 @default.
- W1968448561 cites W2074698975 @default.
- W1968448561 cites W2079073277 @default.
- W1968448561 cites W2080912283 @default.
- W1968448561 cites W2083903057 @default.
- W1968448561 cites W2084096253 @default.
- W1968448561 cites W2084579279 @default.
- W1968448561 cites W2087667416 @default.
- W1968448561 cites W2088298001 @default.
- W1968448561 cites W2089899398 @default.
- W1968448561 cites W2090323037 @default.
- W1968448561 cites W2093106702 @default.
- W1968448561 cites W2102824496 @default.
- W1968448561 cites W2134232929 @default.
- W1968448561 cites W2138990589 @default.
- W1968448561 cites W2154781514 @default.
- W1968448561 cites W2161480748 @default.
- W1968448561 cites W2168513163 @default.
- W1968448561 cites W2292183274 @default.
- W1968448561 cites W3009121211 @default.
- W1968448561 cites W4229563280 @default.
- W1968448561 doi "https://doi.org/10.1016/j.gloplacha.2010.01.003" @default.
- W1968448561 hasPublicationYear "2010" @default.
- W1968448561 type Work @default.
- W1968448561 sameAs 1968448561 @default.
- W1968448561 citedByCount "14" @default.
- W1968448561 countsByYear W19684485612013 @default.
- W1968448561 countsByYear W19684485612014 @default.
- W1968448561 countsByYear W19684485612015 @default.
- W1968448561 countsByYear W19684485612017 @default.
- W1968448561 countsByYear W19684485612020 @default.
- W1968448561 countsByYear W19684485612022 @default.
- W1968448561 countsByYear W19684485612023 @default.
- W1968448561 crossrefType "journal-article" @default.
- W1968448561 hasAuthorship W1968448561A5006109000 @default.
- W1968448561 hasAuthorship W1968448561A5087613142 @default.
- W1968448561 hasConcept C111368507 @default.
- W1968448561 hasConcept C114990195 @default.
- W1968448561 hasConcept C115343472 @default.
- W1968448561 hasConcept C127313418 @default.
- W1968448561 hasConcept C132651083 @default.
- W1968448561 hasConcept C150484471 @default.
- W1968448561 hasConcept C151730666 @default.
- W1968448561 hasConcept C15739521 @default.
- W1968448561 hasConcept C160464908 @default.
- W1968448561 hasConcept C17744445 @default.
- W1968448561 hasConcept C178100555 @default.
- W1968448561 hasConcept C186240526 @default.
- W1968448561 hasConcept C190538878 @default.
- W1968448561 hasConcept C197115733 @default.
- W1968448561 hasConcept C199539241 @default.
- W1968448561 hasConcept C33683781 @default.
- W1968448561 hasConcept C49204034 @default.
- W1968448561 hasConcept C53570757 @default.
- W1968448561 hasConcept C55173820 @default.
- W1968448561 hasConcept C81027334 @default.
- W1968448561 hasConceptScore W1968448561C111368507 @default.
- W1968448561 hasConceptScore W1968448561C114990195 @default.
- W1968448561 hasConceptScore W1968448561C115343472 @default.
- W1968448561 hasConceptScore W1968448561C127313418 @default.
- W1968448561 hasConceptScore W1968448561C132651083 @default.