Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968474682> ?p ?o ?g. }
- W1968474682 endingPage "38" @default.
- W1968474682 startingPage "26" @default.
- W1968474682 abstract "This study investigated how lidar-derived vegetation indices, disturbance history from Landsat time series (LTS) imagery, plot location accuracy, and plot size influenced accuracy of statistical spatial models (nearest-neighbor imputation maps) of forest vegetation composition and structure. Nearest-neighbor (NN) imputation maps were developed for 539,000 ha in the central Oregon Cascades, USA. Mapped explanatory data included tasseled-cap indices and disturbance history metrics (year, magnitude, and duration of disturbance) from LTS imagery, lidar-derived vegetation metrics, climate, topography, and soil parent material. Vegetation data from USDA Forest Service forest inventory plots was summarized at two plot sizes (plot and subplot) and geographically located with two levels of accuracy (standard and improved). Maps of vegetation composition and structure were developed with the Gradient Nearest Neighbor (GNN) method of NN imputation using different combinations of explanatory variables, plot spatial resolution, and plot positional accuracy. Lidar vegetation indices greatly improved predictions of live tree structure, moderately improved predictions of snag density and down wood volume, but did not consistently improve species predictions. LTS disturbance metrics improved predictions of forest structure, but not to the degree of lidar indices, while also improving predictions of many species. Absence of disturbance attribution (i.e. disturbance type such as fire or timber harvest) in LTS disturbance metrics may have limited our ability to predict forest structure. Absence of corrected lidar intensity values may also have lowered accuracy of snag and species predictions. However, LTS disturbance attribution and lidar corrected intensity values may not be able to overcome fundamental limitations of remote sensing for predicting snags and down wood that are obscured by the forest canopy. Improved GPS plot locations had little influence on map accuracy, and we suggest under what conditions improved GPS plot locations may or may not improve the accuracy of predictive maps that link remote sensing with forest inventory plots. Subplot NN imputation maps had much lower accuracy compared to maps generated using response variables from larger whole plots. No single map had optimal results for every mapped variable, suggesting map users and developers need to prioritize what forest vegetation attributes are most important for any given map application." @default.
- W1968474682 created "2016-06-24" @default.
- W1968474682 creator A5005658069 @default.
- W1968474682 creator A5007808944 @default.
- W1968474682 creator A5018091203 @default.
- W1968474682 creator A5065183313 @default.
- W1968474682 creator A5068309011 @default.
- W1968474682 creator A5069307416 @default.
- W1968474682 creator A5085605715 @default.
- W1968474682 date "2014-03-01" @default.
- W1968474682 modified "2023-10-02" @default.
- W1968474682 title "Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure" @default.
- W1968474682 cites W1541774929 @default.
- W1968474682 cites W1938682326 @default.
- W1968474682 cites W1966334841 @default.
- W1968474682 cites W1972914827 @default.
- W1968474682 cites W1975431417 @default.
- W1968474682 cites W1979210946 @default.
- W1968474682 cites W1996022982 @default.
- W1968474682 cites W1996263757 @default.
- W1968474682 cites W1997337568 @default.
- W1968474682 cites W1998760159 @default.
- W1968474682 cites W2001618165 @default.
- W1968474682 cites W2002041313 @default.
- W1968474682 cites W2009218697 @default.
- W1968474682 cites W2010062112 @default.
- W1968474682 cites W2016529367 @default.
- W1968474682 cites W2017131791 @default.
- W1968474682 cites W2019126302 @default.
- W1968474682 cites W2043142216 @default.
- W1968474682 cites W2055397346 @default.
- W1968474682 cites W2057327074 @default.
- W1968474682 cites W2061551338 @default.
- W1968474682 cites W2066505406 @default.
- W1968474682 cites W2073022697 @default.
- W1968474682 cites W2082012651 @default.
- W1968474682 cites W2084289470 @default.
- W1968474682 cites W2085520997 @default.
- W1968474682 cites W2086620533 @default.
- W1968474682 cites W2086941309 @default.
- W1968474682 cites W2097601813 @default.
- W1968474682 cites W2098938043 @default.
- W1968474682 cites W2100165672 @default.
- W1968474682 cites W2113249705 @default.
- W1968474682 cites W2115268776 @default.
- W1968474682 cites W2115506886 @default.
- W1968474682 cites W2118001333 @default.
- W1968474682 cites W2118338083 @default.
- W1968474682 cites W2123337039 @default.
- W1968474682 cites W2125377929 @default.
- W1968474682 cites W2126323182 @default.
- W1968474682 cites W2129838758 @default.
- W1968474682 cites W2130037317 @default.
- W1968474682 cites W2130239832 @default.
- W1968474682 cites W2131303771 @default.
- W1968474682 cites W2131472136 @default.
- W1968474682 cites W2139427406 @default.
- W1968474682 cites W2140908571 @default.
- W1968474682 cites W2143110249 @default.
- W1968474682 cites W2144536354 @default.
- W1968474682 cites W2144819008 @default.
- W1968474682 cites W2150489395 @default.
- W1968474682 cites W2151549592 @default.
- W1968474682 cites W2152515840 @default.
- W1968474682 cites W2157149513 @default.
- W1968474682 cites W2158031389 @default.
- W1968474682 cites W2160644551 @default.
- W1968474682 cites W2161922175 @default.
- W1968474682 cites W2164943663 @default.
- W1968474682 cites W2167941657 @default.
- W1968474682 cites W2175899267 @default.
- W1968474682 cites W2179879290 @default.
- W1968474682 cites W2180682969 @default.
- W1968474682 cites W2273297058 @default.
- W1968474682 cites W2969698120 @default.
- W1968474682 cites W4253296358 @default.
- W1968474682 cites W4253454537 @default.
- W1968474682 cites W4376453377 @default.
- W1968474682 doi "https://doi.org/10.1016/j.rse.2013.12.013" @default.
- W1968474682 hasPublicationYear "2014" @default.
- W1968474682 type Work @default.
- W1968474682 sameAs 1968474682 @default.
- W1968474682 citedByCount "57" @default.
- W1968474682 countsByYear W19684746822014 @default.
- W1968474682 countsByYear W19684746822015 @default.
- W1968474682 countsByYear W19684746822016 @default.
- W1968474682 countsByYear W19684746822017 @default.
- W1968474682 countsByYear W19684746822018 @default.
- W1968474682 countsByYear W19684746822019 @default.
- W1968474682 countsByYear W19684746822020 @default.
- W1968474682 countsByYear W19684746822021 @default.
- W1968474682 countsByYear W19684746822022 @default.
- W1968474682 countsByYear W19684746822023 @default.
- W1968474682 crossrefType "journal-article" @default.
- W1968474682 hasAuthorship W1968474682A5005658069 @default.
- W1968474682 hasAuthorship W1968474682A5007808944 @default.
- W1968474682 hasAuthorship W1968474682A5018091203 @default.
- W1968474682 hasAuthorship W1968474682A5065183313 @default.