Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968478892> ?p ?o ?g. }
- W1968478892 endingPage "310" @default.
- W1968478892 startingPage "301" @default.
- W1968478892 abstract "New and old mosquito-borne diseases have emerged and re-emerged in temperate regions over the recent past, but a mechanistic understanding of mosquito population dynamics, a fundamental step toward disease control, remains elusive. We propose here a Gompertz-based approach to address two obstacles to the development of vector dynamics models in temperate regions: (i) the inclusion of endogenous processes (e.g. density limitation, delayed responses, etc.) and the evaluation of their relative importance vs. exogenous environmental forcings; (ii) the inclusion of realistic descriptions of hydrologic processes and the evaluation of soil moisture as a more direct driver of mosquito population dynamics. The new model is based on a hierarchical state-space structure and is applied to the description of the abundance of Culex pipiens – a West Nile Virus vector – in the Po River Delta region (Northeastern Italy), using weekly mosquito abundance observations at more than 20 sites in the period May–September in 2010 and 2011. The hierarchical structure provides an efficient way of fully exploiting the information from a large network of observation sites. We find that Cx. pipiens abundance has significant density dependence at the one-week scale, which is coherent with its larval developmental time during the summer. This result points to the importance of endogenous population dynamics, most often neglected in mosquito population models, usually simply driven by exogenous environmental forcings. Among exogenous controls, temperature, daylight hours, and soil moisture were found to be most influential. Use of precipitation or soil moisture to force the model leads to very similar predictive skills. The negative correlation of soil moisture and mosquito population may be attributed to the abundance of water in the region (e.g. due to irrigation) and the preference for eutrophic habitats by Cx. pipiens. Variations among sites were highly correlated with land-use factors. The carrying capacity is seen to decrease with the distance to the nearest rice field, while the maximum population growth rate was positively related with the Normalized Difference Vegetation Index, a proxy of vegetation cover. The model shows a satisfactory performance in explaining the variation of mosquito abundance over a horizon of 1 week, particularly as far as peak timing and magnitude are concerned. Large rates of change of population abundance remain difficult to predict, as in other existing models, pointing to persisting gaps in our understanding of the mechanisms regulating mosquito population dynamics." @default.
- W1968478892 created "2016-06-24" @default.
- W1968478892 creator A5003608919 @default.
- W1968478892 creator A5013212563 @default.
- W1968478892 creator A5019908317 @default.
- W1968478892 creator A5054803721 @default.
- W1968478892 creator A5065855208 @default.
- W1968478892 creator A5072838457 @default.
- W1968478892 date "2014-01-01" @default.
- W1968478892 modified "2023-09-26" @default.
- W1968478892 title "Environmental forcing and density-dependent controls of Culex pipiens abundance in a temperate climate (Northeastern Italy)" @default.
- W1968478892 cites W1514162788 @default.
- W1968478892 cites W1517555081 @default.
- W1968478892 cites W1552441047 @default.
- W1968478892 cites W1837071058 @default.
- W1968478892 cites W1963900503 @default.
- W1968478892 cites W1970604559 @default.
- W1968478892 cites W1971977823 @default.
- W1968478892 cites W1976082803 @default.
- W1968478892 cites W1982974288 @default.
- W1968478892 cites W2000032310 @default.
- W1968478892 cites W2007873570 @default.
- W1968478892 cites W2012860949 @default.
- W1968478892 cites W2020750308 @default.
- W1968478892 cites W2030868779 @default.
- W1968478892 cites W2034797768 @default.
- W1968478892 cites W2041357136 @default.
- W1968478892 cites W2042094306 @default.
- W1968478892 cites W2048373502 @default.
- W1968478892 cites W2053680934 @default.
- W1968478892 cites W2055617473 @default.
- W1968478892 cites W2071310793 @default.
- W1968478892 cites W2077657151 @default.
- W1968478892 cites W2094365014 @default.
- W1968478892 cites W2106717853 @default.
- W1968478892 cites W2115156133 @default.
- W1968478892 cites W2118205041 @default.
- W1968478892 cites W2120238938 @default.
- W1968478892 cites W2122560025 @default.
- W1968478892 cites W2127435093 @default.
- W1968478892 cites W2149063357 @default.
- W1968478892 cites W2150700909 @default.
- W1968478892 cites W2166790957 @default.
- W1968478892 cites W2177219868 @default.
- W1968478892 cites W2178540365 @default.
- W1968478892 cites W2180155478 @default.
- W1968478892 cites W2332855931 @default.
- W1968478892 cites W4230529995 @default.
- W1968478892 cites W4238385570 @default.
- W1968478892 cites W4252744027 @default.
- W1968478892 doi "https://doi.org/10.1016/j.ecolmodel.2013.10.019" @default.
- W1968478892 hasPublicationYear "2014" @default.
- W1968478892 type Work @default.
- W1968478892 sameAs 1968478892 @default.
- W1968478892 citedByCount "21" @default.
- W1968478892 countsByYear W19684788922014 @default.
- W1968478892 countsByYear W19684788922016 @default.
- W1968478892 countsByYear W19684788922017 @default.
- W1968478892 countsByYear W19684788922018 @default.
- W1968478892 countsByYear W19684788922019 @default.
- W1968478892 countsByYear W19684788922020 @default.
- W1968478892 countsByYear W19684788922021 @default.
- W1968478892 countsByYear W19684788922022 @default.
- W1968478892 countsByYear W19684788922023 @default.
- W1968478892 crossrefType "journal-article" @default.
- W1968478892 hasAuthorship W1968478892A5003608919 @default.
- W1968478892 hasAuthorship W1968478892A5013212563 @default.
- W1968478892 hasAuthorship W1968478892A5019908317 @default.
- W1968478892 hasAuthorship W1968478892A5054803721 @default.
- W1968478892 hasAuthorship W1968478892A5065855208 @default.
- W1968478892 hasAuthorship W1968478892A5072838457 @default.
- W1968478892 hasConcept C121332964 @default.
- W1968478892 hasConcept C127313418 @default.
- W1968478892 hasConcept C144024400 @default.
- W1968478892 hasConcept C149923435 @default.
- W1968478892 hasConcept C173758957 @default.
- W1968478892 hasConcept C18903297 @default.
- W1968478892 hasConcept C197115733 @default.
- W1968478892 hasConcept C205649164 @default.
- W1968478892 hasConcept C2776442642 @default.
- W1968478892 hasConcept C2779518617 @default.
- W1968478892 hasConcept C2908647359 @default.
- W1968478892 hasConcept C39432304 @default.
- W1968478892 hasConcept C47019633 @default.
- W1968478892 hasConcept C49204034 @default.
- W1968478892 hasConcept C77077793 @default.
- W1968478892 hasConcept C81461190 @default.
- W1968478892 hasConcept C86803240 @default.
- W1968478892 hasConcept C91586092 @default.
- W1968478892 hasConceptScore W1968478892C121332964 @default.
- W1968478892 hasConceptScore W1968478892C127313418 @default.
- W1968478892 hasConceptScore W1968478892C144024400 @default.
- W1968478892 hasConceptScore W1968478892C149923435 @default.
- W1968478892 hasConceptScore W1968478892C173758957 @default.
- W1968478892 hasConceptScore W1968478892C18903297 @default.
- W1968478892 hasConceptScore W1968478892C197115733 @default.
- W1968478892 hasConceptScore W1968478892C205649164 @default.
- W1968478892 hasConceptScore W1968478892C2776442642 @default.