Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968530908> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W1968530908 endingPage "727" @default.
- W1968530908 startingPage "722" @default.
- W1968530908 abstract "Following a partial fuel-melting accident, a Fuel–Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as “vapor explosion”. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling process—from values typical for film boiling to much higher values typical for nucleate boiling. Correlations for the minimum temperature and the minimum heat flux necessary to maintain film boiling were established in terms of the subcooling level, the size of the spheres and their material. The minimum temperature to maintain film boiling was used as the principle criteria for the occurrence of vapor explosion. Other criteria, for the intensity of the vapor film collapse was derived from the maximum heat flux following the vapor film collapse, and the audible sound (which is generated by the shock wave). It is assumed that a high intensity of the vapor film collapse will result in a more efficient propagation stage and enhancement of the vapor explosion." @default.
- W1968530908 created "2016-06-24" @default.
- W1968530908 creator A5012264213 @default.
- W1968530908 creator A5068722184 @default.
- W1968530908 creator A5075488230 @default.
- W1968530908 date "2009-04-01" @default.
- W1968530908 modified "2023-10-14" @default.
- W1968530908 title "Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion" @default.
- W1968530908 cites W1986417162 @default.
- W1968530908 cites W1991495268 @default.
- W1968530908 cites W2006304701 @default.
- W1968530908 cites W2034863665 @default.
- W1968530908 cites W2038033269 @default.
- W1968530908 cites W2045817187 @default.
- W1968530908 cites W2084624353 @default.
- W1968530908 cites W2095897459 @default.
- W1968530908 doi "https://doi.org/10.1016/j.nucengdes.2008.11.021" @default.
- W1968530908 hasPublicationYear "2009" @default.
- W1968530908 type Work @default.
- W1968530908 sameAs 1968530908 @default.
- W1968530908 citedByCount "45" @default.
- W1968530908 countsByYear W19685309082012 @default.
- W1968530908 countsByYear W19685309082013 @default.
- W1968530908 countsByYear W19685309082014 @default.
- W1968530908 countsByYear W19685309082015 @default.
- W1968530908 countsByYear W19685309082016 @default.
- W1968530908 countsByYear W19685309082017 @default.
- W1968530908 countsByYear W19685309082018 @default.
- W1968530908 countsByYear W19685309082020 @default.
- W1968530908 countsByYear W19685309082021 @default.
- W1968530908 countsByYear W19685309082022 @default.
- W1968530908 countsByYear W19685309082023 @default.
- W1968530908 crossrefType "journal-article" @default.
- W1968530908 hasAuthorship W1968530908A5012264213 @default.
- W1968530908 hasAuthorship W1968530908A5068722184 @default.
- W1968530908 hasAuthorship W1968530908A5075488230 @default.
- W1968530908 hasConcept C121332964 @default.
- W1968530908 hasConcept C127413603 @default.
- W1968530908 hasConcept C138875322 @default.
- W1968530908 hasConcept C157777378 @default.
- W1968530908 hasConcept C159188206 @default.
- W1968530908 hasConcept C159985019 @default.
- W1968530908 hasConcept C192562407 @default.
- W1968530908 hasConcept C195801359 @default.
- W1968530908 hasConcept C197194406 @default.
- W1968530908 hasConcept C2778917722 @default.
- W1968530908 hasConcept C50517652 @default.
- W1968530908 hasConcept C528095902 @default.
- W1968530908 hasConcept C57879066 @default.
- W1968530908 hasConcept C70477161 @default.
- W1968530908 hasConcept C81697391 @default.
- W1968530908 hasConcept C91914117 @default.
- W1968530908 hasConcept C97355855 @default.
- W1968530908 hasConceptScore W1968530908C121332964 @default.
- W1968530908 hasConceptScore W1968530908C127413603 @default.
- W1968530908 hasConceptScore W1968530908C138875322 @default.
- W1968530908 hasConceptScore W1968530908C157777378 @default.
- W1968530908 hasConceptScore W1968530908C159188206 @default.
- W1968530908 hasConceptScore W1968530908C159985019 @default.
- W1968530908 hasConceptScore W1968530908C192562407 @default.
- W1968530908 hasConceptScore W1968530908C195801359 @default.
- W1968530908 hasConceptScore W1968530908C197194406 @default.
- W1968530908 hasConceptScore W1968530908C2778917722 @default.
- W1968530908 hasConceptScore W1968530908C50517652 @default.
- W1968530908 hasConceptScore W1968530908C528095902 @default.
- W1968530908 hasConceptScore W1968530908C57879066 @default.
- W1968530908 hasConceptScore W1968530908C70477161 @default.
- W1968530908 hasConceptScore W1968530908C81697391 @default.
- W1968530908 hasConceptScore W1968530908C91914117 @default.
- W1968530908 hasConceptScore W1968530908C97355855 @default.
- W1968530908 hasIssue "4" @default.
- W1968530908 hasLocation W19685309081 @default.
- W1968530908 hasOpenAccess W1968530908 @default.
- W1968530908 hasPrimaryLocation W19685309081 @default.
- W1968530908 hasRelatedWork W129034500 @default.
- W1968530908 hasRelatedWork W1968530908 @default.
- W1968530908 hasRelatedWork W2015037297 @default.
- W1968530908 hasRelatedWork W2086943422 @default.
- W1968530908 hasRelatedWork W2195907350 @default.
- W1968530908 hasRelatedWork W2611665869 @default.
- W1968530908 hasRelatedWork W2892221692 @default.
- W1968530908 hasRelatedWork W3011459779 @default.
- W1968530908 hasRelatedWork W4241065078 @default.
- W1968530908 hasRelatedWork W4375865693 @default.
- W1968530908 hasVolume "239" @default.
- W1968530908 isParatext "false" @default.
- W1968530908 isRetracted "false" @default.
- W1968530908 magId "1968530908" @default.
- W1968530908 workType "article" @default.