Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968547753> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1968547753 abstract "Recent trends in medical image processing involve computationally intensive processing techniques on large data sets, especially for 3D applications such as segmentation, registration, volume rendering etc. Multi-resolution image processing techniques have been used in order to speed-up these methods. However, all well-known techniques currently used in multi-resolution medical image processing rely on using Gaussain-based or other equivalent floating point representations that are lossy and irreversible. In this paper, we study the use of Integer Wavelet Transforms (IWT) to address the issue of lossless representation and reversible reconstruction for such medical image processing applications while still retaining all the benefits which floating-point transforms offer such as high speed and efficient memory usage. In particular, we consider three low-complexity reversible wavelet transforms namely the - Lazy-wavelet, the Haar wavelet or (1,1) and the S+P transform as against the Gaussian filter for multi-resolution speed-up of an automatic bone removal algorithm for abdomen CT Angiography. Perfect-reconstruction integer wavelet filters have the ability to perfectly recover the original data set at any step in the application. An additional advantage with the reversible wavelet representation is that it is suitable for lossless compression for purposes of storage, archiving and fast retrieval. Given the fact that even a slight loss of information in medical image processing can be detrimental to diagnostic accuracy, IWTs seem to be the ideal choice for multi-resolution based medical image segmentation algorithms. These could also be useful for other medical image processing methods." @default.
- W1968547753 created "2016-06-24" @default.
- W1968547753 creator A5028441247 @default.
- W1968547753 creator A5077181669 @default.
- W1968547753 date "2005-04-29" @default.
- W1968547753 modified "2023-09-27" @default.
- W1968547753 title "On the use of lossless integer wavelet transforms in medical image segmentation" @default.
- W1968547753 cites W2103504761 @default.
- W1968547753 cites W2117188745 @default.
- W1968547753 cites W2118217749 @default.
- W1968547753 doi "https://doi.org/10.1117/12.595074" @default.
- W1968547753 hasPublicationYear "2005" @default.
- W1968547753 type Work @default.
- W1968547753 sameAs 1968547753 @default.
- W1968547753 citedByCount "0" @default.
- W1968547753 crossrefType "proceedings-article" @default.
- W1968547753 hasAuthorship W1968547753A5028441247 @default.
- W1968547753 hasAuthorship W1968547753A5077181669 @default.
- W1968547753 hasConcept C111350171 @default.
- W1968547753 hasConcept C115961682 @default.
- W1968547753 hasConcept C124504099 @default.
- W1968547753 hasConcept C154945302 @default.
- W1968547753 hasConcept C165021410 @default.
- W1968547753 hasConcept C196216189 @default.
- W1968547753 hasConcept C199550912 @default.
- W1968547753 hasConcept C31972630 @default.
- W1968547753 hasConcept C41008148 @default.
- W1968547753 hasConcept C46286280 @default.
- W1968547753 hasConcept C47432892 @default.
- W1968547753 hasConcept C73339587 @default.
- W1968547753 hasConcept C78548338 @default.
- W1968547753 hasConcept C81081738 @default.
- W1968547753 hasConcept C89600930 @default.
- W1968547753 hasConcept C9417928 @default.
- W1968547753 hasConceptScore W1968547753C111350171 @default.
- W1968547753 hasConceptScore W1968547753C115961682 @default.
- W1968547753 hasConceptScore W1968547753C124504099 @default.
- W1968547753 hasConceptScore W1968547753C154945302 @default.
- W1968547753 hasConceptScore W1968547753C165021410 @default.
- W1968547753 hasConceptScore W1968547753C196216189 @default.
- W1968547753 hasConceptScore W1968547753C199550912 @default.
- W1968547753 hasConceptScore W1968547753C31972630 @default.
- W1968547753 hasConceptScore W1968547753C41008148 @default.
- W1968547753 hasConceptScore W1968547753C46286280 @default.
- W1968547753 hasConceptScore W1968547753C47432892 @default.
- W1968547753 hasConceptScore W1968547753C73339587 @default.
- W1968547753 hasConceptScore W1968547753C78548338 @default.
- W1968547753 hasConceptScore W1968547753C81081738 @default.
- W1968547753 hasConceptScore W1968547753C89600930 @default.
- W1968547753 hasConceptScore W1968547753C9417928 @default.
- W1968547753 hasLocation W19685477531 @default.
- W1968547753 hasOpenAccess W1968547753 @default.
- W1968547753 hasPrimaryLocation W19685477531 @default.
- W1968547753 hasRelatedWork W1527106071 @default.
- W1968547753 hasRelatedWork W1584965201 @default.
- W1968547753 hasRelatedWork W1975399356 @default.
- W1968547753 hasRelatedWork W2099320905 @default.
- W1968547753 hasRelatedWork W2123906596 @default.
- W1968547753 hasRelatedWork W2170755393 @default.
- W1968547753 hasRelatedWork W2329833258 @default.
- W1968547753 hasRelatedWork W2329854360 @default.
- W1968547753 hasRelatedWork W2362725188 @default.
- W1968547753 hasRelatedWork W2532401248 @default.
- W1968547753 isParatext "false" @default.
- W1968547753 isRetracted "false" @default.
- W1968547753 magId "1968547753" @default.
- W1968547753 workType "article" @default.