Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968809722> ?p ?o ?g. }
- W1968809722 endingPage "1075" @default.
- W1968809722 startingPage "1041" @default.
- W1968809722 abstract "Abstract Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ∼80 °C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite δ18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ∼35 to ∼90 °C. Calcite δ18O values range from ∼0 to ∼22‰ (SMOW) but most fall between 12 and 20‰. The highest Th and the lowest δ18O values are found in the older calcite. Calcite Th and δ18O values indicate that most calcite precipitated from water with δ18O values between −13 and −7‰, similar to modern meteoric waters. Twenty-two 207Pb/235U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ∼9.5 to 1.9 Ma. New and published 207Pb/235U and 230Th/Uages coupled with the Th values and estimates of temperature from calcite δ18O values indicate that maximum unsaturated zone temperatures probably predate ∼10 Ma and that the unsaturated zone had cooled to near-present-day temperatures (24–26 °C at a depth of 250 m) by 2–4 Ma. The evidence of elevated temperatures persisting in ash flow tuffs adjacent to parent calderas for as much as ∼8 Ma is a new finding, but consistent with thermal modeling. Simulations using the HEAT code demonstrate that prolonged cooling of the unsaturated zone is consistent with magmatic heat inputs and deep-seated (sub-water table) hydrothermal activity generated by the large magma body ∼8 km to the north that produced the 15–11 Ma ash flows and ash falls that make up Yucca Mountain. The evidence discussed in this and preceding papers strongly supports unsaturated zone deposition of the secondary minerals from descending meteoric waters. Although depositional temperatures reflect conductive (and possibly vapor-phase convective) heating of the unsaturated zone related to regional magmatic sources until perhaps 6 Ma, depositional conditions similar to the present-day unsaturated zone have prevailed for at least the past 2–4 Ma." @default.
- W1968809722 created "2016-06-24" @default.
- W1968809722 creator A5030268559 @default.
- W1968809722 creator A5035896538 @default.
- W1968809722 creator A5050939502 @default.
- W1968809722 creator A5075606002 @default.
- W1968809722 creator A5080853412 @default.
- W1968809722 date "2008-05-01" @default.
- W1968809722 modified "2023-10-17" @default.
- W1968809722 title "Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA" @default.
- W1968809722 cites W1482126867 @default.
- W1968809722 cites W1493429364 @default.
- W1968809722 cites W1510718349 @default.
- W1968809722 cites W1547907389 @default.
- W1968809722 cites W1570582923 @default.
- W1968809722 cites W1677162244 @default.
- W1968809722 cites W1945611584 @default.
- W1968809722 cites W1965344518 @default.
- W1968809722 cites W1971976661 @default.
- W1968809722 cites W1986529207 @default.
- W1968809722 cites W1987668196 @default.
- W1968809722 cites W1992258126 @default.
- W1968809722 cites W2000194451 @default.
- W1968809722 cites W2006226915 @default.
- W1968809722 cites W2008281306 @default.
- W1968809722 cites W2014442914 @default.
- W1968809722 cites W2014811337 @default.
- W1968809722 cites W2016015255 @default.
- W1968809722 cites W2017913935 @default.
- W1968809722 cites W2021586548 @default.
- W1968809722 cites W2023235964 @default.
- W1968809722 cites W2036014873 @default.
- W1968809722 cites W2036097977 @default.
- W1968809722 cites W2036188229 @default.
- W1968809722 cites W2037704524 @default.
- W1968809722 cites W2045949358 @default.
- W1968809722 cites W2046473714 @default.
- W1968809722 cites W2054811331 @default.
- W1968809722 cites W2055712320 @default.
- W1968809722 cites W2058266287 @default.
- W1968809722 cites W2067807581 @default.
- W1968809722 cites W2068539457 @default.
- W1968809722 cites W2070497862 @default.
- W1968809722 cites W2070741263 @default.
- W1968809722 cites W2083929373 @default.
- W1968809722 cites W2090004278 @default.
- W1968809722 cites W2096773693 @default.
- W1968809722 cites W2113136540 @default.
- W1968809722 cites W2120833098 @default.
- W1968809722 cites W2142540707 @default.
- W1968809722 cites W2145180142 @default.
- W1968809722 cites W2151968680 @default.
- W1968809722 cites W2156829230 @default.
- W1968809722 cites W2169389516 @default.
- W1968809722 cites W2169493574 @default.
- W1968809722 cites W2343280464 @default.
- W1968809722 cites W263674673 @default.
- W1968809722 cites W3021532751 @default.
- W1968809722 cites W4243715129 @default.
- W1968809722 cites W431379195 @default.
- W1968809722 cites W93411377 @default.
- W1968809722 doi "https://doi.org/10.1016/j.apgeochem.2007.08.009" @default.
- W1968809722 hasPublicationYear "2008" @default.
- W1968809722 type Work @default.
- W1968809722 sameAs 1968809722 @default.
- W1968809722 citedByCount "12" @default.
- W1968809722 countsByYear W19688097222012 @default.
- W1968809722 countsByYear W19688097222013 @default.
- W1968809722 countsByYear W19688097222014 @default.
- W1968809722 countsByYear W19688097222015 @default.
- W1968809722 crossrefType "journal-article" @default.
- W1968809722 hasAuthorship W1968809722A5030268559 @default.
- W1968809722 hasAuthorship W1968809722A5035896538 @default.
- W1968809722 hasAuthorship W1968809722A5050939502 @default.
- W1968809722 hasAuthorship W1968809722A5075606002 @default.
- W1968809722 hasAuthorship W1968809722A5080853412 @default.
- W1968809722 hasConcept C127313418 @default.
- W1968809722 hasConcept C17409809 @default.
- W1968809722 hasConcept C187320778 @default.
- W1968809722 hasConcept C18903297 @default.
- W1968809722 hasConcept C1965285 @default.
- W1968809722 hasConcept C2779711381 @default.
- W1968809722 hasConcept C35588792 @default.
- W1968809722 hasConcept C76177295 @default.
- W1968809722 hasConcept C76886044 @default.
- W1968809722 hasConcept C86803240 @default.
- W1968809722 hasConceptScore W1968809722C127313418 @default.
- W1968809722 hasConceptScore W1968809722C17409809 @default.
- W1968809722 hasConceptScore W1968809722C187320778 @default.
- W1968809722 hasConceptScore W1968809722C18903297 @default.
- W1968809722 hasConceptScore W1968809722C1965285 @default.
- W1968809722 hasConceptScore W1968809722C2779711381 @default.
- W1968809722 hasConceptScore W1968809722C35588792 @default.
- W1968809722 hasConceptScore W1968809722C76177295 @default.
- W1968809722 hasConceptScore W1968809722C76886044 @default.
- W1968809722 hasConceptScore W1968809722C86803240 @default.
- W1968809722 hasIssue "5" @default.
- W1968809722 hasLocation W19688097221 @default.