Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968909043> ?p ?o ?g. }
- W1968909043 endingPage "3607" @default.
- W1968909043 startingPage "3596" @default.
- W1968909043 abstract "This paper describes a kinetic theory of the crystallization of nanoparticles, where nanoparticles are dissolving and crystals are forming in solution. The theory assumes that a crystal nucleates only on a nanoparticle, the crystal stops growing at a certain size, and the concentration of metal ion in solution is close to the solubility of the nanoparticles. On the basis of these assumptions, we have derived integral equations for R(t) (crystal ratio as a function of time). We have solved the integral equations with a successive approximation method. When time t is less than tinflec (=rmax/G, rmax = maximum radius of crystal, G = growth rate of crystal), R(t) is close to the 4th power of time; when t is larger than tinflec, R(t) is close to an exponential-type function. The kinetic theory has been applied successfully to the transformation of ferrihydrite nanoparticles to goethite or hematite crystals and the crystallization of TiO2 and ZrO2. The theory shows that the nucleation rate of the crystal essentially determines the crystallization rate and that an induction period is observed when the growth of the crystal is slow." @default.
- W1968909043 created "2016-06-24" @default.
- W1968909043 creator A5025519240 @default.
- W1968909043 creator A5038274081 @default.
- W1968909043 creator A5075842667 @default.
- W1968909043 creator A5077716138 @default.
- W1968909043 date "2010-06-30" @default.
- W1968909043 modified "2023-10-06" @default.
- W1968909043 title "Kinetic Theory of Crystallization of Nanoparticles" @default.
- W1968909043 cites W1552158845 @default.
- W1968909043 cites W1971593569 @default.
- W1968909043 cites W1974755705 @default.
- W1968909043 cites W1977196632 @default.
- W1968909043 cites W1987364219 @default.
- W1968909043 cites W1993526244 @default.
- W1968909043 cites W1999988505 @default.
- W1968909043 cites W2002837484 @default.
- W1968909043 cites W2009286237 @default.
- W1968909043 cites W2009687223 @default.
- W1968909043 cites W2017010951 @default.
- W1968909043 cites W2017598227 @default.
- W1968909043 cites W2018665604 @default.
- W1968909043 cites W2019089007 @default.
- W1968909043 cites W2019293828 @default.
- W1968909043 cites W2024908520 @default.
- W1968909043 cites W2025169367 @default.
- W1968909043 cites W2026336558 @default.
- W1968909043 cites W2033964304 @default.
- W1968909043 cites W2056320034 @default.
- W1968909043 cites W2064677413 @default.
- W1968909043 cites W2071244448 @default.
- W1968909043 cites W2077995802 @default.
- W1968909043 cites W2084148668 @default.
- W1968909043 cites W2089672189 @default.
- W1968909043 cites W2090732497 @default.
- W1968909043 cites W2103594315 @default.
- W1968909043 cites W2113532965 @default.
- W1968909043 cites W2122271308 @default.
- W1968909043 cites W2138405719 @default.
- W1968909043 cites W2147614905 @default.
- W1968909043 cites W2159049505 @default.
- W1968909043 cites W2167166182 @default.
- W1968909043 cites W2311372485 @default.
- W1968909043 cites W4250468202 @default.
- W1968909043 doi "https://doi.org/10.1021/cg100488t" @default.
- W1968909043 hasPublicationYear "2010" @default.
- W1968909043 type Work @default.
- W1968909043 sameAs 1968909043 @default.
- W1968909043 citedByCount "20" @default.
- W1968909043 countsByYear W19689090432012 @default.
- W1968909043 countsByYear W19689090432014 @default.
- W1968909043 countsByYear W19689090432015 @default.
- W1968909043 countsByYear W19689090432016 @default.
- W1968909043 countsByYear W19689090432017 @default.
- W1968909043 countsByYear W19689090432019 @default.
- W1968909043 countsByYear W19689090432021 @default.
- W1968909043 countsByYear W19689090432023 @default.
- W1968909043 crossrefType "journal-article" @default.
- W1968909043 hasAuthorship W1968909043A5025519240 @default.
- W1968909043 hasAuthorship W1968909043A5038274081 @default.
- W1968909043 hasAuthorship W1968909043A5075842667 @default.
- W1968909043 hasAuthorship W1968909043A5077716138 @default.
- W1968909043 hasConcept C121332964 @default.
- W1968909043 hasConcept C145148216 @default.
- W1968909043 hasConcept C147789679 @default.
- W1968909043 hasConcept C148898269 @default.
- W1968909043 hasConcept C150394285 @default.
- W1968909043 hasConcept C155672457 @default.
- W1968909043 hasConcept C171250308 @default.
- W1968909043 hasConcept C178790620 @default.
- W1968909043 hasConcept C185592680 @default.
- W1968909043 hasConcept C191897082 @default.
- W1968909043 hasConcept C192562407 @default.
- W1968909043 hasConcept C199360897 @default.
- W1968909043 hasConcept C203036418 @default.
- W1968909043 hasConcept C26456737 @default.
- W1968909043 hasConcept C2779131772 @default.
- W1968909043 hasConcept C2780191927 @default.
- W1968909043 hasConcept C2781285689 @default.
- W1968909043 hasConcept C41008148 @default.
- W1968909043 hasConcept C54175244 @default.
- W1968909043 hasConcept C54998646 @default.
- W1968909043 hasConcept C61048295 @default.
- W1968909043 hasConcept C62520636 @default.
- W1968909043 hasConcept C8010536 @default.
- W1968909043 hasConcept C88380143 @default.
- W1968909043 hasConcept C97355855 @default.
- W1968909043 hasConceptScore W1968909043C121332964 @default.
- W1968909043 hasConceptScore W1968909043C145148216 @default.
- W1968909043 hasConceptScore W1968909043C147789679 @default.
- W1968909043 hasConceptScore W1968909043C148898269 @default.
- W1968909043 hasConceptScore W1968909043C150394285 @default.
- W1968909043 hasConceptScore W1968909043C155672457 @default.
- W1968909043 hasConceptScore W1968909043C171250308 @default.
- W1968909043 hasConceptScore W1968909043C178790620 @default.
- W1968909043 hasConceptScore W1968909043C185592680 @default.
- W1968909043 hasConceptScore W1968909043C191897082 @default.
- W1968909043 hasConceptScore W1968909043C192562407 @default.