Matches in SemOpenAlex for { <https://semopenalex.org/work/W1968928251> ?p ?o ?g. }
- W1968928251 endingPage "451" @default.
- W1968928251 startingPage "417" @default.
- W1968928251 abstract "Enrichment iron ore of the Hamersley Province, currently estimated at a resource of over 40 billion tonnes (Gt), mainly consists of BIF (banded iron-formation)-hosted bedded iron deposits (BID) and channel iron deposits (CID), with only minor detrital iron deposits (DID). The Hamersley BID comprises two major ore types: the dominant supergene martite–goethite (M-G) ores (Mesozoic–Paleocene) and the premium martite–microplaty hematite ores (M-mplH; ca 2.0 Ga) with their various subtypes. The supergene M-G ores are not common outside Australia, whereas the M-mplH ores are the principal worldwide resource. There are two current dominant genetic models for the Hamersley BID. In the earlier 1980–1985 model, supergene M-G ores formed in the Paleoproterozoic well below normal atmospheric access, driven by seasonal oxidising electrochemical reactions in the vadose zone of the parent BIF (cathode) linked through conducting magnetite horizons to the deep reacting zone (anode). Proterozoic regional metamorphism/diagenesis at ∼80–100°C of these M-G ores formed mplH from the matrix goethite in the local hydrothermal environment of its own exhaled water to produce M-mplH ores with residual goethite. Following general exposure by erosion in the Cretaceous–Paleocene when a major second phase of M-G ores formed, ground water leaching of residual goethite from the metamorphosed Proterozoic ores resulted in the mainly goethite-free M-mplH ores of Mt Whaleback and Mt Tom Price. Residual goethite is common in the Paraburdoo M-mplH-goethite ores where erratic remnants of Paleoproterozoic cover indicate more recent exposure. Deep unweathered BIF alteration residuals in two small areas of the Mt Tom Price M-mplH deposits have been used since 1999 for new hypogene–supergene modelling of the M-mplH ores. These models involve a major Paleoproterozoic hydrothermal stage in which alkaline solutions from the underlying Wittenoom Formation dolomite traversed the Southern Batter Fault to leach matrix silica from the BIF, adding siderite and apatite to produce a magnetite–siderite–apatite ‘protore.’ A later heated meteoric solution stage oxidised siderite to mplH + ankerite and magnetite to martite. Weathering finally removed residual carbonates and apatite leaving the high-grade porous M-mplH ore. Further concepts for the Mt Tom Price North and the Southern Ridge Deposits involving acid solutions followed, but these have been modified to return essentially to the earlier hypogene–supergene model. Textural data from erratic ‘metasomatic BIF’ zones associated with the above deposits are unlike those of the typical martite–microplaty hematite ore bodies. The destiny of the massive volumes of dissolved silica gangue and the absence of massive silica aureoles has not been explained. Petrographic and other evidence indicate the Mt Tom Price metasomatism is a localised post-ore phenomenon. Exothermic oxidation reactions in the associated pyrite-rich black shales during post-ore removal by groundwater of remnant goethite in the ores may have resulted in this very localised and erratic hydrothermal alteration of BIF and its immediately associated pre-existing ore." @default.
- W1968928251 created "2016-06-24" @default.
- W1968928251 creator A5000063813 @default.
- W1968928251 creator A5073139292 @default.
- W1968928251 date "2011-07-01" @default.
- W1968928251 modified "2023-10-06" @default.
- W1968928251 title "Genesis modelling for the Hamersley BIF-hosted iron ores of Western Australia: a critical review" @default.
- W1968928251 cites W1966013526 @default.
- W1968928251 cites W1968122563 @default.
- W1968928251 cites W1980643831 @default.
- W1968928251 cites W1986015370 @default.
- W1968928251 cites W1989239982 @default.
- W1968928251 cites W1989480129 @default.
- W1968928251 cites W1992415260 @default.
- W1968928251 cites W1994565546 @default.
- W1968928251 cites W1996457620 @default.
- W1968928251 cites W1998427651 @default.
- W1968928251 cites W2000367714 @default.
- W1968928251 cites W2004312923 @default.
- W1968928251 cites W2008682318 @default.
- W1968928251 cites W2010746508 @default.
- W1968928251 cites W2028611592 @default.
- W1968928251 cites W2029258776 @default.
- W1968928251 cites W2034914622 @default.
- W1968928251 cites W2042334580 @default.
- W1968928251 cites W2046558288 @default.
- W1968928251 cites W2052845442 @default.
- W1968928251 cites W2061228403 @default.
- W1968928251 cites W2065418619 @default.
- W1968928251 cites W2074034690 @default.
- W1968928251 cites W2079731727 @default.
- W1968928251 cites W2084213416 @default.
- W1968928251 cites W2085984893 @default.
- W1968928251 cites W2086293877 @default.
- W1968928251 cites W2094225616 @default.
- W1968928251 cites W2117200021 @default.
- W1968928251 cites W2119760672 @default.
- W1968928251 cites W2122113836 @default.
- W1968928251 cites W2136093831 @default.
- W1968928251 cites W2148231028 @default.
- W1968928251 cites W2158667051 @default.
- W1968928251 cites W4242121839 @default.
- W1968928251 cites W4244793115 @default.
- W1968928251 cites W4245723282 @default.
- W1968928251 cites W4245913433 @default.
- W1968928251 cites W4246733032 @default.
- W1968928251 cites W4249990764 @default.
- W1968928251 cites W4250837551 @default.
- W1968928251 cites W2061402658 @default.
- W1968928251 doi "https://doi.org/10.1080/08120099.2011.566937" @default.
- W1968928251 hasPublicationYear "2011" @default.
- W1968928251 type Work @default.
- W1968928251 sameAs 1968928251 @default.
- W1968928251 citedByCount "46" @default.
- W1968928251 countsByYear W19689282512012 @default.
- W1968928251 countsByYear W19689282512013 @default.
- W1968928251 countsByYear W19689282512014 @default.
- W1968928251 countsByYear W19689282512015 @default.
- W1968928251 countsByYear W19689282512016 @default.
- W1968928251 countsByYear W19689282512017 @default.
- W1968928251 countsByYear W19689282512018 @default.
- W1968928251 countsByYear W19689282512019 @default.
- W1968928251 countsByYear W19689282512020 @default.
- W1968928251 countsByYear W19689282512021 @default.
- W1968928251 countsByYear W19689282512022 @default.
- W1968928251 countsByYear W19689282512023 @default.
- W1968928251 crossrefType "journal-article" @default.
- W1968928251 hasAuthorship W1968928251A5000063813 @default.
- W1968928251 hasAuthorship W1968928251A5073139292 @default.
- W1968928251 hasConcept C102198088 @default.
- W1968928251 hasConcept C127313418 @default.
- W1968928251 hasConcept C140167661 @default.
- W1968928251 hasConcept C147717901 @default.
- W1968928251 hasConcept C150394285 @default.
- W1968928251 hasConcept C151730666 @default.
- W1968928251 hasConcept C156622251 @default.
- W1968928251 hasConcept C171991868 @default.
- W1968928251 hasConcept C17409809 @default.
- W1968928251 hasConcept C178790620 @default.
- W1968928251 hasConcept C185592680 @default.
- W1968928251 hasConcept C191897082 @default.
- W1968928251 hasConcept C192562407 @default.
- W1968928251 hasConcept C199289684 @default.
- W1968928251 hasConcept C2776062231 @default.
- W1968928251 hasConcept C2776152364 @default.
- W1968928251 hasConcept C2777781897 @default.
- W1968928251 hasConcept C2777787761 @default.
- W1968928251 hasConcept C2778572594 @default.
- W1968928251 hasConcept C2779131772 @default.
- W1968928251 hasConcept C2779748816 @default.
- W1968928251 hasConcept C40724407 @default.
- W1968928251 hasConcept C6494504 @default.
- W1968928251 hasConcept C7145564 @default.
- W1968928251 hasConcept C77928131 @default.
- W1968928251 hasConcept C93033518 @default.
- W1968928251 hasConceptScore W1968928251C102198088 @default.
- W1968928251 hasConceptScore W1968928251C127313418 @default.
- W1968928251 hasConceptScore W1968928251C140167661 @default.