Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969380437> ?p ?o ?g. }
- W1969380437 endingPage "154" @default.
- W1969380437 startingPage "144" @default.
- W1969380437 abstract "Purpose: To improve the reliability, accuracy, and computational efficiency of tissue classification with multispectral sequences [T1, T2, and proton density (PD)], we developed an automated method for identifying training classes to be used in a discriminant function analysis. We compared it with a supervised operator-dependent method, evaluating its reliability and validity. We also developed a fuzzy (continuous) classification to correct for partial voluming. Method: Images were obtained on a 1.5 T GE Signa MR scanner using three pulse sequences that were co-registered. Training classes for the discriminant analysis were obtained in two ways. The operator-dependent method involved defining circular ROIs containing 5-15 voxels that represented pure samples of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), using a total of 150-300 voxels for each tissue type. The automated method involved selecting a large number of samples of brain tissue with sufficiently low variance and randomly placed throughout the brain (plugs), partitioning these samples into GM, WM, and CSF, and minimizing the amount of variance within each partition of samples to optimize its purity. The purity of the plug was estimated by calculating the variance of 8 voxels in all modalities (T1, T2, and PD). We also compared sharp (discrete) measurements (which classified tissue only as GM, WM, or CSF) and fuzzy (continuous) measurements (which corrected for partial voluming by weighting the classification based on the mixture of tissue types in each voxel). Results: Reliability was compared for the operator-dependent and automated methods as well as for the fuzzy versus sharp classification. The automated sharp classifications consistently had the highest interrater and intrarater reliability. Validity was assessed in three ways: reproducibility of measurements when the same individuals were scanned on multiple occasions, sensitivity of the method to detecting changes associated with aging, and agreement between the automated segmentation values and those produced through expert manual segmentation. The sharp automated classification emerged as slightly superior to the other three methods according to each of these validators. Its reproducibility index (intraclass r) was 0.97, 0.98, and 0.98 for total CSF, total GM, and total WM, respectively. Its correlations with age were 0.54, -0.61, and -0.53, respectively. Its percent agreement with the expert manually segmented tissue for the three tissue types was 93, 90, and 94%, respectively. Conclusion: Automated identification of training classes for discriminant analysis was clearly superior to a method that required operator intervention. A sharp (discrete) classification into three tissue types was also slightly superior to one that used fuzzy classification to produce continuous measurements to correct for partial voluming. This multispectral automated discriminant analysis method produces a computationally efficient, reliable, and valid method for classifying brain tissue into GM, WM, and CSF. It corrects some of the problems with reliability and computational inefficiency previously observed for operator-dependent approaches to segmentation." @default.
- W1969380437 created "2016-06-24" @default.
- W1969380437 creator A5012501900 @default.
- W1969380437 creator A5016178452 @default.
- W1969380437 creator A5027585283 @default.
- W1969380437 creator A5035942208 @default.
- W1969380437 creator A5057564161 @default.
- W1969380437 creator A5076170083 @default.
- W1969380437 creator A5077497119 @default.
- W1969380437 date "1999-01-01" @default.
- W1969380437 modified "2023-09-23" @default.
- W1969380437 title "Improving Tissue Classification in MRI: A Three-Dimensional Multispectral Discriminant Analysis Method with Automated Training Class Selection" @default.
- W1969380437 cites W1540013489 @default.
- W1969380437 cites W1974621282 @default.
- W1969380437 cites W1976473223 @default.
- W1969380437 cites W1984979148 @default.
- W1969380437 cites W1990005524 @default.
- W1969380437 cites W1993458383 @default.
- W1969380437 cites W1998558675 @default.
- W1969380437 cites W2002247919 @default.
- W1969380437 cites W2015629132 @default.
- W1969380437 cites W2025868060 @default.
- W1969380437 cites W2031763269 @default.
- W1969380437 cites W2033946716 @default.
- W1969380437 cites W2033986952 @default.
- W1969380437 cites W2037352762 @default.
- W1969380437 cites W2044092843 @default.
- W1969380437 cites W2045351617 @default.
- W1969380437 cites W2045637288 @default.
- W1969380437 cites W2045986827 @default.
- W1969380437 cites W2051118254 @default.
- W1969380437 cites W2061496391 @default.
- W1969380437 cites W2063125200 @default.
- W1969380437 cites W2066608632 @default.
- W1969380437 cites W2073087131 @default.
- W1969380437 cites W2075931477 @default.
- W1969380437 cites W2076608722 @default.
- W1969380437 cites W2086873027 @default.
- W1969380437 cites W2087889886 @default.
- W1969380437 cites W2092341188 @default.
- W1969380437 cites W2113332184 @default.
- W1969380437 cites W2115984740 @default.
- W1969380437 cites W2118439356 @default.
- W1969380437 cites W2130520030 @default.
- W1969380437 cites W2134165173 @default.
- W1969380437 cites W2162630772 @default.
- W1969380437 cites W2163940053 @default.
- W1969380437 cites W2400057008 @default.
- W1969380437 cites W2413084273 @default.
- W1969380437 doi "https://doi.org/10.1097/00004728-199901000-00030" @default.
- W1969380437 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10050826" @default.
- W1969380437 hasPublicationYear "1999" @default.
- W1969380437 type Work @default.
- W1969380437 sameAs 1969380437 @default.
- W1969380437 citedByCount "239" @default.
- W1969380437 countsByYear W19693804372012 @default.
- W1969380437 countsByYear W19693804372013 @default.
- W1969380437 countsByYear W19693804372014 @default.
- W1969380437 countsByYear W19693804372015 @default.
- W1969380437 countsByYear W19693804372017 @default.
- W1969380437 countsByYear W19693804372018 @default.
- W1969380437 countsByYear W19693804372019 @default.
- W1969380437 countsByYear W19693804372020 @default.
- W1969380437 crossrefType "journal-article" @default.
- W1969380437 hasAuthorship W1969380437A5012501900 @default.
- W1969380437 hasAuthorship W1969380437A5016178452 @default.
- W1969380437 hasAuthorship W1969380437A5027585283 @default.
- W1969380437 hasAuthorship W1969380437A5035942208 @default.
- W1969380437 hasAuthorship W1969380437A5057564161 @default.
- W1969380437 hasAuthorship W1969380437A5076170083 @default.
- W1969380437 hasAuthorship W1969380437A5077497119 @default.
- W1969380437 hasConcept C126838900 @default.
- W1969380437 hasConcept C153180895 @default.
- W1969380437 hasConcept C154945302 @default.
- W1969380437 hasConcept C173163844 @default.
- W1969380437 hasConcept C183115368 @default.
- W1969380437 hasConcept C41008148 @default.
- W1969380437 hasConcept C54170458 @default.
- W1969380437 hasConcept C69738355 @default.
- W1969380437 hasConcept C71924100 @default.
- W1969380437 hasConceptScore W1969380437C126838900 @default.
- W1969380437 hasConceptScore W1969380437C153180895 @default.
- W1969380437 hasConceptScore W1969380437C154945302 @default.
- W1969380437 hasConceptScore W1969380437C173163844 @default.
- W1969380437 hasConceptScore W1969380437C183115368 @default.
- W1969380437 hasConceptScore W1969380437C41008148 @default.
- W1969380437 hasConceptScore W1969380437C54170458 @default.
- W1969380437 hasConceptScore W1969380437C69738355 @default.
- W1969380437 hasConceptScore W1969380437C71924100 @default.
- W1969380437 hasIssue "1" @default.
- W1969380437 hasLocation W19693804371 @default.
- W1969380437 hasLocation W19693804372 @default.
- W1969380437 hasOpenAccess W1969380437 @default.
- W1969380437 hasPrimaryLocation W19693804371 @default.
- W1969380437 hasRelatedWork W1966028303 @default.
- W1969380437 hasRelatedWork W1968332688 @default.
- W1969380437 hasRelatedWork W2134472250 @default.
- W1969380437 hasRelatedWork W2146076056 @default.