Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969445747> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1969445747 endingPage "1443" @default.
- W1969445747 startingPage "1441" @default.
- W1969445747 abstract "NanomedicineVol. 9, No. 10 EditorialPositive charge, negative effect: the impact of cationic nanoparticles in the brainPeter Møller & Jens LykkesfeldtPeter MøllerDepartment of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK–1014 Copenhagen K, DenmarkSearch for more papers by this author & Jens LykkesfeldtExperimental Pharmacology & Toxicology Group, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK–1870 Frederiksberg C, DenmarkSearch for more papers by this authorPublished Online:25 Sep 2014https://doi.org/10.2217/nnm.14.91AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: cardiovascular diseasecationic particlesgenotoxicityinflammationliposomesoxidative stressReferences1 Knudsen KB, Northeved H, Gjetting T et al. Biodistribution of rhodamine B fluorescence-labeled cationic nanoparticles in rats. J. Nanopart. Res. 16, 2221 (2014). Crossref, Google Scholar2 Knudsen KB, Northeved H, Ek PK et al. Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 8, 764–774 (2014). Medline, CAS, Google Scholar3 Donaldson K, Seaton A. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 9, 13 (2012). Crossref, Medline, Google Scholar4 Nemmar A, Hoylaerts MF, Hoet PH et al. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am. J. Respir. Crit. Care Med. 166, 998–1004 (2002). Crossref, Medline, Google Scholar5 Silva VM, Corson N, Elder A, Oberdorster G. The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol. Sci. 85, 983–989 (2005). Crossref, Medline, CAS, Google Scholar6 Møller P, Mikkelsen L, Vesterdal LK et al. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit. Rev. Toxicol. 41, 339–368 (2011). Crossref, Medline, Google Scholar7 Donaldson K, Duffin R, Langrish JP et al. Nanoparticles and the cardiovascular system: a critical review. Nanomed. (Lond.) 8, 403–423 (2013). Link, CAS, Google Scholar8 Shah V, Taratula O, Garbuzenko OB et al. Genotoxicity of different nanocarriers: possible modifications for the delivery of nucleic acids. Curr. Drug Discov. Technol. 10, 8–15 (2013). Medline, CAS, Google Scholar9 Merhi M, Dombu CY, Brient A et al. Study of serum interaction with a cationic nanoparticle: implications for in vitro endocytosis, cytotoxicity and genotoxicity. Int. J. Pharm. 423, 37–44 (2012). Crossref, Medline, CAS, Google Scholar10 Bonassi S, El-Zein R, Bolognesi C, Fenech M. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis 26, 93–100 (2011). Crossref, Medline, CAS, Google Scholar11 Hamad-Schifferli K. How can we exploit the protein corona? Nanomed. (Lond.) 8, 1–3 (2013). Link, CAS, Google Scholar12 Moghadam BY, Hou WC, Corredor C, Westerhoff P, Posner JD. Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir 28, 16318–16326 (2012). Crossref, Medline, CAS, Google Scholar13 Hirano A, Uda K, Maeda Y, Akasaka T, Shiraki K. One-dimensional protein-based nanoparticles induce lipid bilayer disruption: carbon nanotube conjugates and amyloid fibrils. Langmuir 26, 17256–17259 (2010). Crossref, Medline, CAS, Google Scholar14 Hong S, Bielinska AU, Mecke A et al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjugate Chem. 15, 774–782 (2004). Crossref, Medline, CAS, Google Scholar15 Mecke A, Majoros IJ, Patri AK, BakerJRJr, Holl MM, Orr BG. Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir 21, 10348–10354 (2005). Crossref, Medline, CAS, Google Scholar16 Møller P, Jacobsen NR, Folkmann JK et al. Role of oxidative damage in toxicity of particulates. Free Radic. Res. 44, 1–46 (2010). Crossref, Medline, CAS, Google Scholar17 Scheule RK, St George JA, Bagley RG et al. Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum. Gene Ther. 8, 689–707 (1997). Crossref, Medline, CAS, Google Scholar18 Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm. Res. 17, 521–525 (2000). Crossref, Medline, CAS, Google Scholar19 Xia T, Kovochich M, Brant J et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano. Lett. 6, 1794–1807 (2006). Crossref, Medline, CAS, Google Scholar20 Bexiga MG, Varela JA, Wang F et al. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5, 557–567 (2011). Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByIn vitro Function Study of Different Negative Charge Pullulan Nanoparticles for Sentinel Lymph Node AngiographyCurrent Drug Delivery, Vol. 20, No. 10Preparation of hydrophobically modified carboxylated pullulan nanoparticles for evaluating the effect of hydrophobic substitution on the properties and functions of nanoparticles27 July 2021 | Materials Technology, Vol. 37, No. 10Liposomes as Brain Targeted Delivery Systems20 November 2020Intracerebral Injection of Graphene Oxide Nanosheets Mitigates Microglial Activation Without Inducing Acute Neurotoxicity: A Pilot Comparison to Other Nanomaterials10 November 2020 | Small, Vol. 16, No. 48Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells27 May 2015 | Cell Proliferation, Vol. 48, No. 4 Vol. 9, No. 10 STAY CONNECTED Metrics Downloaded 120 times History Published online 25 September 2014 Published in print July 2014 Information© Future Medicine LtdKeywordscardiovascular diseasecationic particlesgenotoxicityinflammationliposomesoxidative stressFinancial & competing interests disclosureThe authors are supported by the Centre of Pharmaceutical Nanoscience and Nanotoxicology (CPNN) financed by the Danish Council Strategic Research, The Danish Council for Independent Research (grant no 12–126262), The Lundbeck Foundation Center for Biomembranes in Nanomedicine (CBN) and the LIFEPHARM Centre for In vivo Pharmacology. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W1969445747 created "2016-06-24" @default.
- W1969445747 creator A5021170936 @default.
- W1969445747 creator A5035893451 @default.
- W1969445747 date "2014-07-01" @default.
- W1969445747 modified "2023-10-16" @default.
- W1969445747 title "Positive charge, negative effect: the impact of cationic nanoparticles in the brain" @default.
- W1969445747 cites W1580639099 @default.
- W1969445747 cites W1991190678 @default.
- W1969445747 cites W2017311751 @default.
- W1969445747 cites W2031836337 @default.
- W1969445747 cites W2041072987 @default.
- W1969445747 cites W2059231520 @default.
- W1969445747 cites W2078278984 @default.
- W1969445747 cites W2081746071 @default.
- W1969445747 cites W2114477244 @default.
- W1969445747 cites W2119280059 @default.
- W1969445747 cites W2121061589 @default.
- W1969445747 cites W2140932755 @default.
- W1969445747 cites W2144251181 @default.
- W1969445747 cites W2149312363 @default.
- W1969445747 cites W2150953709 @default.
- W1969445747 cites W2157489799 @default.
- W1969445747 cites W2186893253 @default.
- W1969445747 cites W2312938807 @default.
- W1969445747 doi "https://doi.org/10.2217/nnm.14.91" @default.
- W1969445747 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25253492" @default.
- W1969445747 hasPublicationYear "2014" @default.
- W1969445747 type Work @default.
- W1969445747 sameAs 1969445747 @default.
- W1969445747 citedByCount "5" @default.
- W1969445747 countsByYear W19694457472015 @default.
- W1969445747 countsByYear W19694457472020 @default.
- W1969445747 countsByYear W19694457472021 @default.
- W1969445747 countsByYear W19694457472023 @default.
- W1969445747 crossrefType "journal-article" @default.
- W1969445747 hasAuthorship W1969445747A5021170936 @default.
- W1969445747 hasAuthorship W1969445747A5035893451 @default.
- W1969445747 hasConcept C171250308 @default.
- W1969445747 hasConcept C185592680 @default.
- W1969445747 hasConcept C192562407 @default.
- W1969445747 hasConcept C2779473830 @default.
- W1969445747 hasConcept C55493867 @default.
- W1969445747 hasConcept C71924100 @default.
- W1969445747 hasConceptScore W1969445747C171250308 @default.
- W1969445747 hasConceptScore W1969445747C185592680 @default.
- W1969445747 hasConceptScore W1969445747C192562407 @default.
- W1969445747 hasConceptScore W1969445747C2779473830 @default.
- W1969445747 hasConceptScore W1969445747C55493867 @default.
- W1969445747 hasConceptScore W1969445747C71924100 @default.
- W1969445747 hasIssue "10" @default.
- W1969445747 hasLocation W19694457471 @default.
- W1969445747 hasLocation W19694457472 @default.
- W1969445747 hasOpenAccess W1969445747 @default.
- W1969445747 hasPrimaryLocation W19694457471 @default.
- W1969445747 hasRelatedWork W1531601525 @default.
- W1969445747 hasRelatedWork W2319480705 @default.
- W1969445747 hasRelatedWork W2384464875 @default.
- W1969445747 hasRelatedWork W2606230654 @default.
- W1969445747 hasRelatedWork W2607424097 @default.
- W1969445747 hasRelatedWork W2748952813 @default.
- W1969445747 hasRelatedWork W2899084033 @default.
- W1969445747 hasRelatedWork W2948807893 @default.
- W1969445747 hasRelatedWork W3031052312 @default.
- W1969445747 hasRelatedWork W2778153218 @default.
- W1969445747 hasVolume "9" @default.
- W1969445747 isParatext "false" @default.
- W1969445747 isRetracted "false" @default.
- W1969445747 magId "1969445747" @default.
- W1969445747 workType "article" @default.