Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969478748> ?p ?o ?g. }
- W1969478748 endingPage "n/a" @default.
- W1969478748 startingPage "n/a" @default.
- W1969478748 abstract "Many earth and environmental variables appear to be self-affine (monofractal) or multifractal with spatial (or temporal) increments having exceedance probability tails that decay as powers of − α where 1 < α ≤ 2. The literature considers self-affine and multifractal modes of scaling to be fundamentally different, the first arising from additive and the second from multiplicative random fields or processes. We demonstrate theoretically that data having finite support, sampled across a finite domain from one or several realizations of an additive Gaussian field constituting fractional Brownian motion (fBm) characterized by α = 2, give rise to positive square (or absolute) increments which behave as if the field was multifractal when in fact it is monofractal. Sampling such data from additive fractional Lévy motions (fLm) with 1 < α < 2 causes them to exhibit spurious multifractality. Deviations from apparent multifractal behaviour at small and large lags are due to nonzero data support and finite domain size, unrelated to noise or undersampling (the causes cited for such deviations in the literature). Our analysis is based on a formal decomposition of anisotropic fLm (fBm when α = 2) into a continuous hierarchy of statistically independent and homogeneous random fields, or modes, which captures the above behaviour in terms of only E + 3 parameters where E is Euclidean dimension. Although the decomposition is consistent with a hydrologic rationale proposed by Neuman (2003), its mathematical validity is independent of such a rationale. Our results suggest that it may be worth checking how closely would variables considered in the literature to be multifractal (e.g. experimental and simulated turbulent velocities, some simulated porous flow velocities, landscape elevations, rain intensities, river network area and width functions, river flow series, soil water storage and physical properties) fit the simpler monofractal model considered in this paper (such an effort would require paying close attention to the support and sampling window scales of the data). Parsimony would suggest associating variables found to fit both models equally well with the latter. Copyright © 2010 John Wiley & Sons, Ltd." @default.
- W1969478748 created "2016-06-24" @default.
- W1969478748 creator A5070667788 @default.
- W1969478748 date "2010-01-01" @default.
- W1969478748 modified "2023-10-06" @default.
- W1969478748 title "Apparent/spurious multifractality of data sampled from fractional Brownian/Lévy motions" @default.
- W1969478748 cites W1532519084 @default.
- W1969478748 cites W1558536774 @default.
- W1969478748 cites W1824925390 @default.
- W1969478748 cites W1841980625 @default.
- W1969478748 cites W1872800447 @default.
- W1969478748 cites W1922053149 @default.
- W1969478748 cites W1966011004 @default.
- W1969478748 cites W1966215731 @default.
- W1969478748 cites W1968881024 @default.
- W1969478748 cites W1969794539 @default.
- W1969478748 cites W1976754802 @default.
- W1969478748 cites W1986142560 @default.
- W1969478748 cites W1988940276 @default.
- W1969478748 cites W2000871758 @default.
- W1969478748 cites W2002414354 @default.
- W1969478748 cites W2002596522 @default.
- W1969478748 cites W2004724652 @default.
- W1969478748 cites W2008801897 @default.
- W1969478748 cites W2009326857 @default.
- W1969478748 cites W2020763891 @default.
- W1969478748 cites W2021974043 @default.
- W1969478748 cites W2022309203 @default.
- W1969478748 cites W2030390428 @default.
- W1969478748 cites W2031753087 @default.
- W1969478748 cites W2032967826 @default.
- W1969478748 cites W2034701005 @default.
- W1969478748 cites W2035565766 @default.
- W1969478748 cites W2054147824 @default.
- W1969478748 cites W2064661518 @default.
- W1969478748 cites W2065342302 @default.
- W1969478748 cites W2065935022 @default.
- W1969478748 cites W2077335744 @default.
- W1969478748 cites W2083732688 @default.
- W1969478748 cites W2085911358 @default.
- W1969478748 cites W2099529384 @default.
- W1969478748 cites W2102901030 @default.
- W1969478748 cites W2104587668 @default.
- W1969478748 cites W2106169141 @default.
- W1969478748 cites W2122684836 @default.
- W1969478748 cites W2125538889 @default.
- W1969478748 cites W2139444706 @default.
- W1969478748 cites W2144621930 @default.
- W1969478748 cites W2159634064 @default.
- W1969478748 cites W2161184519 @default.
- W1969478748 cites W2165779610 @default.
- W1969478748 cites W2166998322 @default.
- W1969478748 cites W2989624916 @default.
- W1969478748 cites W3122186249 @default.
- W1969478748 cites W3159223345 @default.
- W1969478748 cites W4243066586 @default.
- W1969478748 doi "https://doi.org/10.1002/hyp.7611" @default.
- W1969478748 hasPublicationYear "2010" @default.
- W1969478748 type Work @default.
- W1969478748 sameAs 1969478748 @default.
- W1969478748 citedByCount "15" @default.
- W1969478748 countsByYear W19694787482012 @default.
- W1969478748 countsByYear W19694787482013 @default.
- W1969478748 countsByYear W19694787482014 @default.
- W1969478748 countsByYear W19694787482015 @default.
- W1969478748 countsByYear W19694787482016 @default.
- W1969478748 countsByYear W19694787482017 @default.
- W1969478748 countsByYear W19694787482021 @default.
- W1969478748 crossrefType "journal-article" @default.
- W1969478748 hasAuthorship W1969478748A5070667788 @default.
- W1969478748 hasConcept C105795698 @default.
- W1969478748 hasConcept C108819105 @default.
- W1969478748 hasConcept C112401455 @default.
- W1969478748 hasConcept C121332964 @default.
- W1969478748 hasConcept C121864883 @default.
- W1969478748 hasConcept C133905733 @default.
- W1969478748 hasConcept C134306372 @default.
- W1969478748 hasConcept C2524010 @default.
- W1969478748 hasConcept C33923547 @default.
- W1969478748 hasConcept C40636538 @default.
- W1969478748 hasConcept C97256817 @default.
- W1969478748 hasConcept C99844830 @default.
- W1969478748 hasConceptScore W1969478748C105795698 @default.
- W1969478748 hasConceptScore W1969478748C108819105 @default.
- W1969478748 hasConceptScore W1969478748C112401455 @default.
- W1969478748 hasConceptScore W1969478748C121332964 @default.
- W1969478748 hasConceptScore W1969478748C121864883 @default.
- W1969478748 hasConceptScore W1969478748C133905733 @default.
- W1969478748 hasConceptScore W1969478748C134306372 @default.
- W1969478748 hasConceptScore W1969478748C2524010 @default.
- W1969478748 hasConceptScore W1969478748C33923547 @default.
- W1969478748 hasConceptScore W1969478748C40636538 @default.
- W1969478748 hasConceptScore W1969478748C97256817 @default.
- W1969478748 hasConceptScore W1969478748C99844830 @default.
- W1969478748 hasLocation W19694787481 @default.
- W1969478748 hasOpenAccess W1969478748 @default.
- W1969478748 hasPrimaryLocation W19694787481 @default.
- W1969478748 hasRelatedWork W1667378831 @default.