Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969524071> ?p ?o ?g. }
- W1969524071 endingPage "67" @default.
- W1969524071 startingPage "56" @default.
- W1969524071 abstract "With the increasing resolution of digital elevation models (DEMs), computational efficiency problems have been encountered when extracting the drainage network of a large river basin at billion-pixel scales. The efficiency of the most time-consuming depression-filling pretreatment has been improved by using the O(NlogN) complexity least-cost path search method, but the complete extraction steps following this method have not been proposed and tested. In this paper, an improved O(NlogN) algorithm was proposed by introducing a size-balanced binary search tree (BST) to improve the efficiency of the depression-filling pretreatment further. The following extraction steps, including the flow direction determination and the upslope area accumulation, were also redesigned to benefit from this improvement. Therefore, an efficient and comprehensive method was developed. The method was tested to extract drainage networks of 31 river basins with areas greater than 500,000 km2 from the 30-m-resolution ASTER GDEM and two sub-basins with areas of approximately 1000 km2 from the 1-m-resolution airborne LiDAR DEM. Complete drainage networks with both vector features and topographic parameters were obtained with time consumptions in O(NlogN) complexity. The results indicate that the developed method can be used to extract entire drainage networks from DEMs with billions of pixels with high efficiency." @default.
- W1969524071 created "2016-06-24" @default.
- W1969524071 creator A5002927588 @default.
- W1969524071 creator A5016494112 @default.
- W1969524071 creator A5026833191 @default.
- W1969524071 creator A5034075240 @default.
- W1969524071 creator A5056639523 @default.
- W1969524071 date "2015-06-01" @default.
- W1969524071 modified "2023-10-17" @default.
- W1969524071 title "An efficient and comprehensive method for drainage network extraction from DEM with billions of pixels using a size-balanced binary search tree" @default.
- W1969524071 cites W1487341688 @default.
- W1969524071 cites W1857377566 @default.
- W1969524071 cites W1969483458 @default.
- W1969524071 cites W1971156863 @default.
- W1969524071 cites W1973987598 @default.
- W1969524071 cites W1982698339 @default.
- W1969524071 cites W1990436032 @default.
- W1969524071 cites W1993284672 @default.
- W1969524071 cites W1995029546 @default.
- W1969524071 cites W2008746426 @default.
- W1969524071 cites W2009171116 @default.
- W1969524071 cites W2013292613 @default.
- W1969524071 cites W2017139787 @default.
- W1969524071 cites W2018012641 @default.
- W1969524071 cites W2020957925 @default.
- W1969524071 cites W2022478477 @default.
- W1969524071 cites W2025924291 @default.
- W1969524071 cites W2028515670 @default.
- W1969524071 cites W2031619456 @default.
- W1969524071 cites W2039703091 @default.
- W1969524071 cites W2040151706 @default.
- W1969524071 cites W2041314474 @default.
- W1969524071 cites W2042798982 @default.
- W1969524071 cites W2045348057 @default.
- W1969524071 cites W2049973268 @default.
- W1969524071 cites W2060856119 @default.
- W1969524071 cites W2062660092 @default.
- W1969524071 cites W2065075833 @default.
- W1969524071 cites W2071937242 @default.
- W1969524071 cites W2077982285 @default.
- W1969524071 cites W2079773936 @default.
- W1969524071 cites W2084034686 @default.
- W1969524071 cites W2084119737 @default.
- W1969524071 cites W2086659130 @default.
- W1969524071 cites W2087536601 @default.
- W1969524071 cites W2087884757 @default.
- W1969524071 cites W2088733802 @default.
- W1969524071 cites W2104527017 @default.
- W1969524071 cites W2107703370 @default.
- W1969524071 cites W2111552444 @default.
- W1969524071 cites W2118930130 @default.
- W1969524071 cites W2119534769 @default.
- W1969524071 cites W2133269905 @default.
- W1969524071 cites W2135955237 @default.
- W1969524071 cites W2136290495 @default.
- W1969524071 cites W2136790139 @default.
- W1969524071 cites W2139798871 @default.
- W1969524071 cites W2141852148 @default.
- W1969524071 cites W2142536527 @default.
- W1969524071 cites W2142585322 @default.
- W1969524071 cites W2143296882 @default.
- W1969524071 cites W2149127647 @default.
- W1969524071 cites W2149434760 @default.
- W1969524071 cites W2165654941 @default.
- W1969524071 cites W2170801163 @default.
- W1969524071 cites W2170876537 @default.
- W1969524071 doi "https://doi.org/10.1016/j.geomorph.2015.02.028" @default.
- W1969524071 hasPublicationYear "2015" @default.
- W1969524071 type Work @default.
- W1969524071 sameAs 1969524071 @default.
- W1969524071 citedByCount "54" @default.
- W1969524071 countsByYear W19695240712015 @default.
- W1969524071 countsByYear W19695240712016 @default.
- W1969524071 countsByYear W19695240712017 @default.
- W1969524071 countsByYear W19695240712018 @default.
- W1969524071 countsByYear W19695240712019 @default.
- W1969524071 countsByYear W19695240712020 @default.
- W1969524071 countsByYear W19695240712021 @default.
- W1969524071 countsByYear W19695240712022 @default.
- W1969524071 countsByYear W19695240712023 @default.
- W1969524071 crossrefType "journal-article" @default.
- W1969524071 hasAuthorship W1969524071A5002927588 @default.
- W1969524071 hasAuthorship W1969524071A5016494112 @default.
- W1969524071 hasAuthorship W1969524071A5026833191 @default.
- W1969524071 hasAuthorship W1969524071A5034075240 @default.
- W1969524071 hasAuthorship W1969524071A5056639523 @default.
- W1969524071 hasConcept C11413529 @default.
- W1969524071 hasConcept C126645576 @default.
- W1969524071 hasConcept C127313418 @default.
- W1969524071 hasConcept C135593954 @default.
- W1969524071 hasConcept C13772937 @default.
- W1969524071 hasConcept C154945302 @default.
- W1969524071 hasConcept C160633673 @default.
- W1969524071 hasConcept C163797641 @default.
- W1969524071 hasConcept C181843262 @default.
- W1969524071 hasConcept C187320778 @default.
- W1969524071 hasConcept C18903297 @default.
- W1969524071 hasConcept C197855036 @default.