Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969559896> ?p ?o ?g. }
- W1969559896 endingPage "5253" @default.
- W1969559896 startingPage "5236" @default.
- W1969559896 abstract "Six major theories of quantum dissipative dynamics are compared: Redfield theory, the Gaussian phase space ansatz of Yan and Mukamel, the master equations of Agarwal, Caldeira-Leggett/Oppenheim-Romero-Rochin, and Louisell/Lax, and the semigroup theory of Lindblad. The time evolving density operator from each theory is transformed into a Wigner phase space distribution, and classical-quantum correspondence is investigated via comparison with the phase space distribution of the classical Fokker-Planck (FP) equation. Although the comparison is for the specific case of Markovian dynamics of the damped harmonic oscillator with no pure dephasing, certain inferences can be drawn about general systems. The following are our major conclusions: (1) The harmonic oscillator master equation derived from Redfield theory, in the limit of a classical bath, is identical to the Agarwal master equation. (2) Following Agarwal, the Agarwal master equation can be transformed to phase space, and differs from the classical FP equation only by a zero point energy in the diffusion coefficient. This analytic solution supports Gaussian solutions with the following properties: the differential equations for the first moments in p and q and all but one of the second moments (q2 and pq but not p2) are identical to the classical equations. Moreover, the distribution evolves to the thermal state of the bare quantum system at long times. (3) The Gaussian phase space ansatz of Yan and Mukamel (YM), applied to single surface oscillator dynamics, reduces to the analytical Gaussian solutions of the Agarwal phase space master equation. It follows that the YM ansatz is also a solution to the Redfield master equation. (4) The Agarwal/Redfield master equation has a structure identical to that of the master equation of Caldeira-Leggett/Oppenheim-Romero-Rochin, but the two are equivalent only in the high temperature limit. (5) The Louisell/Lax HO master equation differs from the Agarwal/Redfield form by making a rotating wave approximation (RWA), i.e., keeping terms of the form ââ†,â†â and neglecting terms of the form â†â†,ââ. When transformed into phase space, the neglect of these terms eliminates the modulation in time of the energy dissipation, modulation which is present in the classical solution. This neglect leads to a position-dependent frictional force which violates the principle of translational invariance. (6) The Agarwal/Redfield (AR) equations of motion are shown to violate the semigroup form of Lindblad required for complete positivity. Considering the triad of properties: complete positivity, translational invariance and asymptotic approach to thermal equilibrium, AR sacrifices the first while Lindblad’s form must sacrifice either the second or the third. This implies that for certain initial states Redfield theory can violate simple positivity; however, for a wide range of initial Gaussians, the solution of the AR equations does maintain simple positivity, and thus for these states appears to be distinctly more physical than the solution of the semigroup equations." @default.
- W1969559896 created "2016-06-24" @default.
- W1969559896 creator A5005564351 @default.
- W1969559896 creator A5016002854 @default.
- W1969559896 creator A5028887920 @default.
- W1969559896 date "1997-10-01" @default.
- W1969559896 modified "2023-09-25" @default.
- W1969559896 title "Phase space approach to theories of quantum dissipation" @default.
- W1969559896 cites W1590549657 @default.
- W1969559896 cites W1980161569 @default.
- W1969559896 cites W1988122869 @default.
- W1969559896 cites W1988147940 @default.
- W1969559896 cites W1995097514 @default.
- W1969559896 cites W1995318398 @default.
- W1969559896 cites W1999292447 @default.
- W1969559896 cites W2010985454 @default.
- W1969559896 cites W2013219018 @default.
- W1969559896 cites W2014558331 @default.
- W1969559896 cites W2015683881 @default.
- W1969559896 cites W2016368099 @default.
- W1969559896 cites W2023043901 @default.
- W1969559896 cites W2023940472 @default.
- W1969559896 cites W2024799247 @default.
- W1969559896 cites W2028847674 @default.
- W1969559896 cites W2032839191 @default.
- W1969559896 cites W2036262425 @default.
- W1969559896 cites W2046325854 @default.
- W1969559896 cites W2049844449 @default.
- W1969559896 cites W2063785360 @default.
- W1969559896 cites W2066049659 @default.
- W1969559896 cites W2073756993 @default.
- W1969559896 cites W2074922904 @default.
- W1969559896 cites W2076943975 @default.
- W1969559896 cites W2093301039 @default.
- W1969559896 cites W2105490835 @default.
- W1969559896 cites W2110023503 @default.
- W1969559896 cites W2130860507 @default.
- W1969559896 cites W2171379820 @default.
- W1969559896 cites W2316979017 @default.
- W1969559896 cites W3165898261 @default.
- W1969559896 doi "https://doi.org/10.1063/1.474887" @default.
- W1969559896 hasPublicationYear "1997" @default.
- W1969559896 type Work @default.
- W1969559896 sameAs 1969559896 @default.
- W1969559896 citedByCount "174" @default.
- W1969559896 countsByYear W19695598962012 @default.
- W1969559896 countsByYear W19695598962013 @default.
- W1969559896 countsByYear W19695598962014 @default.
- W1969559896 countsByYear W19695598962015 @default.
- W1969559896 countsByYear W19695598962016 @default.
- W1969559896 countsByYear W19695598962017 @default.
- W1969559896 countsByYear W19695598962018 @default.
- W1969559896 countsByYear W19695598962019 @default.
- W1969559896 countsByYear W19695598962020 @default.
- W1969559896 countsByYear W19695598962021 @default.
- W1969559896 countsByYear W19695598962022 @default.
- W1969559896 countsByYear W19695598962023 @default.
- W1969559896 crossrefType "journal-article" @default.
- W1969559896 hasAuthorship W1969559896A5005564351 @default.
- W1969559896 hasAuthorship W1969559896A5016002854 @default.
- W1969559896 hasAuthorship W1969559896A5028887920 @default.
- W1969559896 hasConcept C121332964 @default.
- W1969559896 hasConcept C128805008 @default.
- W1969559896 hasConcept C130979935 @default.
- W1969559896 hasConcept C151342819 @default.
- W1969559896 hasConcept C152026323 @default.
- W1969559896 hasConcept C194269254 @default.
- W1969559896 hasConcept C201540876 @default.
- W1969559896 hasConcept C33923547 @default.
- W1969559896 hasConcept C37914503 @default.
- W1969559896 hasConcept C40934718 @default.
- W1969559896 hasConcept C53702628 @default.
- W1969559896 hasConcept C62520636 @default.
- W1969559896 hasConcept C69123182 @default.
- W1969559896 hasConcept C70335271 @default.
- W1969559896 hasConcept C78045399 @default.
- W1969559896 hasConcept C84114770 @default.
- W1969559896 hasConceptScore W1969559896C121332964 @default.
- W1969559896 hasConceptScore W1969559896C128805008 @default.
- W1969559896 hasConceptScore W1969559896C130979935 @default.
- W1969559896 hasConceptScore W1969559896C151342819 @default.
- W1969559896 hasConceptScore W1969559896C152026323 @default.
- W1969559896 hasConceptScore W1969559896C194269254 @default.
- W1969559896 hasConceptScore W1969559896C201540876 @default.
- W1969559896 hasConceptScore W1969559896C33923547 @default.
- W1969559896 hasConceptScore W1969559896C37914503 @default.
- W1969559896 hasConceptScore W1969559896C40934718 @default.
- W1969559896 hasConceptScore W1969559896C53702628 @default.
- W1969559896 hasConceptScore W1969559896C62520636 @default.
- W1969559896 hasConceptScore W1969559896C69123182 @default.
- W1969559896 hasConceptScore W1969559896C70335271 @default.
- W1969559896 hasConceptScore W1969559896C78045399 @default.
- W1969559896 hasConceptScore W1969559896C84114770 @default.
- W1969559896 hasIssue "13" @default.
- W1969559896 hasLocation W19695598961 @default.
- W1969559896 hasOpenAccess W1969559896 @default.
- W1969559896 hasPrimaryLocation W19695598961 @default.
- W1969559896 hasRelatedWork W1485988761 @default.