Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969671323> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1969671323 endingPage "728" @default.
- W1969671323 startingPage "657" @default.
- W1969671323 abstract "We consider elliptic operators with complex coefficients and we derive microlocal and local Carleman estimates near a boundary, under sub-ellipticity and strong Lopatinskii condition. Carleman estimates are weighted a priori estimates for the solutions of the associated elliptic boundary problem. The weight is of exponential form, exp ( τ φ ) where τ is meant to be taken as large as desired. Such estimates have numerous applications in unique continuation, inverse problems, and control theory. Based on inequalities for interior and boundary differential quadratic forms, the proof relies on the microlocal factorization of the symbol of the conjugated operator in connection with the sign of the imaginary part of its roots. We further consider weight functions of the previous form with moreover φ = exp ( γ ψ ) , where γ meant to be taken as large as desired, and we derive Carleman estimates where the dependency upon the two large parameters, τ and γ , is made explicit. Applications on unique continuation properties are given. On considére des opérateurs elliptiques à coefficients complexes et on obtient des inégalités de Carleman, microlocales et locales, au voisinage du bord, sous une hypothèse de sous-ellipticité et une condition de Lopatinskii forte. Les fonctions poids utilisées sont de forme exponentielle, exp ( τ φ ) où le paramètre τ peut être choisi arbitrairement grand. De telles estimations ont de nombreuses applications comme dans les questions de prolongement unique, les problèmes inverses et le contrôle. Fondée sur des inégalités pour des formes quadratiques différentielles à l'intérieur et au bord, la démonstration repose sur une factorisation microlocale du symbole de l'opérateur conjugué liée aux signes des parties imaginaires de ses racines. On considére aussi des fonctions poids de la forme précédente avec de plus φ = exp ( γ ψ ) , où γ peut-être choisi arbitrairement grand et on obtient des inégalités de Carleman pour lesquelles la dépendence en les deux grands paramètres, τ et γ , est rendue explicite. Des applications aux questions de prolongement unique sont proposées." @default.
- W1969671323 created "2016-06-24" @default.
- W1969671323 creator A5020320384 @default.
- W1969671323 creator A5054610850 @default.
- W1969671323 date "2015-10-01" @default.
- W1969671323 modified "2023-10-15" @default.
- W1969671323 title "Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems" @default.
- W1969671323 cites W1504430689 @default.
- W1969671323 cites W1561209107 @default.
- W1969671323 cites W1583735530 @default.
- W1969671323 cites W1973697519 @default.
- W1969671323 cites W2002744405 @default.
- W1969671323 cites W2025200817 @default.
- W1969671323 cites W2027369553 @default.
- W1969671323 cites W2027753843 @default.
- W1969671323 cites W2031521898 @default.
- W1969671323 cites W2035096224 @default.
- W1969671323 cites W2036219990 @default.
- W1969671323 cites W2039054227 @default.
- W1969671323 cites W2051202723 @default.
- W1969671323 cites W2056704737 @default.
- W1969671323 cites W2057549650 @default.
- W1969671323 cites W2074881723 @default.
- W1969671323 cites W2082783335 @default.
- W1969671323 cites W2120896968 @default.
- W1969671323 cites W2132528241 @default.
- W1969671323 cites W2137549166 @default.
- W1969671323 cites W2224066471 @default.
- W1969671323 cites W2312726706 @default.
- W1969671323 cites W2530826044 @default.
- W1969671323 cites W2764001381 @default.
- W1969671323 cites W3098329251 @default.
- W1969671323 cites W4233411408 @default.
- W1969671323 doi "https://doi.org/10.1016/j.matpur.2015.03.011" @default.
- W1969671323 hasPublicationYear "2015" @default.
- W1969671323 type Work @default.
- W1969671323 sameAs 1969671323 @default.
- W1969671323 citedByCount "17" @default.
- W1969671323 countsByYear W19696713232016 @default.
- W1969671323 countsByYear W19696713232017 @default.
- W1969671323 countsByYear W19696713232018 @default.
- W1969671323 countsByYear W19696713232019 @default.
- W1969671323 countsByYear W19696713232020 @default.
- W1969671323 countsByYear W19696713232021 @default.
- W1969671323 countsByYear W19696713232022 @default.
- W1969671323 countsByYear W19696713232023 @default.
- W1969671323 crossrefType "journal-article" @default.
- W1969671323 hasAuthorship W1969671323A5020320384 @default.
- W1969671323 hasAuthorship W1969671323A5054610850 @default.
- W1969671323 hasBestOaLocation W19696713231 @default.
- W1969671323 hasConcept C105795698 @default.
- W1969671323 hasConcept C134306372 @default.
- W1969671323 hasConcept C182310444 @default.
- W1969671323 hasConcept C2776291640 @default.
- W1969671323 hasConcept C28826006 @default.
- W1969671323 hasConcept C2988329120 @default.
- W1969671323 hasConcept C33923547 @default.
- W1969671323 hasConcept C70610323 @default.
- W1969671323 hasConceptScore W1969671323C105795698 @default.
- W1969671323 hasConceptScore W1969671323C134306372 @default.
- W1969671323 hasConceptScore W1969671323C182310444 @default.
- W1969671323 hasConceptScore W1969671323C2776291640 @default.
- W1969671323 hasConceptScore W1969671323C28826006 @default.
- W1969671323 hasConceptScore W1969671323C2988329120 @default.
- W1969671323 hasConceptScore W1969671323C33923547 @default.
- W1969671323 hasConceptScore W1969671323C70610323 @default.
- W1969671323 hasIssue "4" @default.
- W1969671323 hasLocation W19696713231 @default.
- W1969671323 hasLocation W19696713232 @default.
- W1969671323 hasLocation W19696713233 @default.
- W1969671323 hasLocation W19696713234 @default.
- W1969671323 hasLocation W19696713235 @default.
- W1969671323 hasLocation W19696713236 @default.
- W1969671323 hasLocation W19696713237 @default.
- W1969671323 hasLocation W19696713238 @default.
- W1969671323 hasOpenAccess W1969671323 @default.
- W1969671323 hasPrimaryLocation W19696713231 @default.
- W1969671323 hasRelatedWork W2076492300 @default.
- W1969671323 hasRelatedWork W2121052302 @default.
- W1969671323 hasRelatedWork W2158851710 @default.
- W1969671323 hasRelatedWork W2377755389 @default.
- W1969671323 hasRelatedWork W2381926872 @default.
- W1969671323 hasRelatedWork W2945350486 @default.
- W1969671323 hasRelatedWork W2952301147 @default.
- W1969671323 hasRelatedWork W2981595730 @default.
- W1969671323 hasRelatedWork W4298455509 @default.
- W1969671323 hasRelatedWork W4372049316 @default.
- W1969671323 hasVolume "104" @default.
- W1969671323 isParatext "false" @default.
- W1969671323 isRetracted "false" @default.
- W1969671323 magId "1969671323" @default.
- W1969671323 workType "article" @default.