Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969676852> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1969676852 endingPage "351" @default.
- W1969676852 startingPage "343" @default.
- W1969676852 abstract "Statement of problem Teeth and dental restorations are difficult to model because of their complex anatomical shape and layered structure. Purpose The purpose of this investigation was to describe the use of an efficient virtual prototyping method for the comparison of bonded porcelain and composite resin onlays to restore endodontically treated molars. Material and methods An intact mandibular molar was digitized with a micro-CT scanner. Surface contours of enamel and dentin were fitted following tooth segmentation based on pixel density using an interactive medical image processing software (Mimics). Standard triangle language files of enamel and dentin surfaces were then exported to a design and meshing software (3-matic). The root filling, base material, and a 3.0-mm-thick onlay were created by merging primitive shapes. Surface splitting, removal of unwanted surfaces, and remeshing allowed generation of an assembly with optimized interfacial mesh congruence and T-junctions. Solid 3-dimensional (3-D) models obtained in a finite element software (Marc/Mentat) were subjected to nonlinear contact analysis to simulate occlusal loading at 200 N and 700 N. Maximum principal stress values were used to calculate the risk of fracture and for validation with existing experimental data. Results There were similar stress distributions at 200 N (maximum peak values of 24 to 26 MPa) for both restorative materials, but marked differences at 700 N, with the porcelain onlay showing occlusal stress peaks more than 30% higher than composite resin. High stress concentrations were found at 700 N at the root level of the porcelain-restored tooth (95 MPa). For the composite resin onlay, secondary peaks of stress at the 700-N load were found above the cemento-enamel junction (47 MPa) with only minor effects at the root. The risk of fracture was increased for porcelain onlays, which correlated with the existing validation data and the decreased risk of fracture below the cemento-enamel junction (CEJ) observed for composite resin onlays. Conclusions The virtual prototyping method can generate detailed and valid 3-D finite element models of a restored, endodontically treated molar. The decreased risk of fracture and more favorable stress distribution of adhesive composite resin onlays compared to porcelain onlays were confirmed. This method is efficient and may be used for other medical and dental applications. (J Prosthet Dent 2010;103:343–351) Teeth and dental restorations are difficult to model because of their complex anatomical shape and layered structure. The purpose of this investigation was to describe the use of an efficient virtual prototyping method for the comparison of bonded porcelain and composite resin onlays to restore endodontically treated molars. An intact mandibular molar was digitized with a micro-CT scanner. Surface contours of enamel and dentin were fitted following tooth segmentation based on pixel density using an interactive medical image processing software (Mimics). Standard triangle language files of enamel and dentin surfaces were then exported to a design and meshing software (3-matic). The root filling, base material, and a 3.0-mm-thick onlay were created by merging primitive shapes. Surface splitting, removal of unwanted surfaces, and remeshing allowed generation of an assembly with optimized interfacial mesh congruence and T-junctions. Solid 3-dimensional (3-D) models obtained in a finite element software (Marc/Mentat) were subjected to nonlinear contact analysis to simulate occlusal loading at 200 N and 700 N. Maximum principal stress values were used to calculate the risk of fracture and for validation with existing experimental data. There were similar stress distributions at 200 N (maximum peak values of 24 to 26 MPa) for both restorative materials, but marked differences at 700 N, with the porcelain onlay showing occlusal stress peaks more than 30% higher than composite resin. High stress concentrations were found at 700 N at the root level of the porcelain-restored tooth (95 MPa). For the composite resin onlay, secondary peaks of stress at the 700-N load were found above the cemento-enamel junction (47 MPa) with only minor effects at the root. The risk of fracture was increased for porcelain onlays, which correlated with the existing validation data and the decreased risk of fracture below the cemento-enamel junction (CEJ) observed for composite resin onlays. The virtual prototyping method can generate detailed and valid 3-D finite element models of a restored, endodontically treated molar. The decreased risk of fracture and more favorable stress distribution of adhesive composite resin onlays compared to porcelain onlays were confirmed. This method is efficient and may be used for other medical and dental applications. (J Prosthet Dent 2010;103:343–351)" @default.
- W1969676852 created "2016-06-24" @default.
- W1969676852 creator A5017136171 @default.
- W1969676852 date "2010-06-01" @default.
- W1969676852 modified "2023-09-22" @default.
- W1969676852 title "Virtual prototyping of adhesively restored, endodontically treated molars" @default.
- W1969676852 cites W1966081881 @default.
- W1969676852 cites W1971021925 @default.
- W1969676852 cites W1978667101 @default.
- W1969676852 cites W1995744394 @default.
- W1969676852 cites W1999464424 @default.
- W1969676852 cites W2014440341 @default.
- W1969676852 cites W2033036480 @default.
- W1969676852 cites W2052417616 @default.
- W1969676852 cites W2053320837 @default.
- W1969676852 cites W2053704596 @default.
- W1969676852 cites W2069295920 @default.
- W1969676852 cites W2072808674 @default.
- W1969676852 cites W2075936579 @default.
- W1969676852 cites W2075979230 @default.
- W1969676852 cites W2078815920 @default.
- W1969676852 cites W2086533199 @default.
- W1969676852 cites W2093248711 @default.
- W1969676852 cites W2118148634 @default.
- W1969676852 cites W2122180601 @default.
- W1969676852 cites W2138544101 @default.
- W1969676852 cites W2139853077 @default.
- W1969676852 cites W2140297989 @default.
- W1969676852 cites W2160192604 @default.
- W1969676852 cites W2167657031 @default.
- W1969676852 cites W2172010081 @default.
- W1969676852 doi "https://doi.org/10.1016/s0022-3913(10)60074-1" @default.
- W1969676852 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20493323" @default.
- W1969676852 hasPublicationYear "2010" @default.
- W1969676852 type Work @default.
- W1969676852 sameAs 1969676852 @default.
- W1969676852 citedByCount "37" @default.
- W1969676852 countsByYear W19696768522012 @default.
- W1969676852 countsByYear W19696768522013 @default.
- W1969676852 countsByYear W19696768522014 @default.
- W1969676852 countsByYear W19696768522015 @default.
- W1969676852 countsByYear W19696768522016 @default.
- W1969676852 countsByYear W19696768522017 @default.
- W1969676852 countsByYear W19696768522018 @default.
- W1969676852 countsByYear W19696768522020 @default.
- W1969676852 countsByYear W19696768522021 @default.
- W1969676852 countsByYear W19696768522022 @default.
- W1969676852 crossrefType "journal-article" @default.
- W1969676852 hasAuthorship W1969676852A5017136171 @default.
- W1969676852 hasConcept C138885662 @default.
- W1969676852 hasConcept C156887251 @default.
- W1969676852 hasConcept C159985019 @default.
- W1969676852 hasConcept C192562407 @default.
- W1969676852 hasConcept C202271784 @default.
- W1969676852 hasConcept C21036866 @default.
- W1969676852 hasConcept C2779263046 @default.
- W1969676852 hasConcept C2780395129 @default.
- W1969676852 hasConcept C29694066 @default.
- W1969676852 hasConcept C41008148 @default.
- W1969676852 hasConcept C41895202 @default.
- W1969676852 hasConcept C71924100 @default.
- W1969676852 hasConceptScore W1969676852C138885662 @default.
- W1969676852 hasConceptScore W1969676852C156887251 @default.
- W1969676852 hasConceptScore W1969676852C159985019 @default.
- W1969676852 hasConceptScore W1969676852C192562407 @default.
- W1969676852 hasConceptScore W1969676852C202271784 @default.
- W1969676852 hasConceptScore W1969676852C21036866 @default.
- W1969676852 hasConceptScore W1969676852C2779263046 @default.
- W1969676852 hasConceptScore W1969676852C2780395129 @default.
- W1969676852 hasConceptScore W1969676852C29694066 @default.
- W1969676852 hasConceptScore W1969676852C41008148 @default.
- W1969676852 hasConceptScore W1969676852C41895202 @default.
- W1969676852 hasConceptScore W1969676852C71924100 @default.
- W1969676852 hasIssue "6" @default.
- W1969676852 hasLocation W19696768521 @default.
- W1969676852 hasLocation W19696768522 @default.
- W1969676852 hasOpenAccess W1969676852 @default.
- W1969676852 hasPrimaryLocation W19696768521 @default.
- W1969676852 hasRelatedWork W189283484 @default.
- W1969676852 hasRelatedWork W1969802679 @default.
- W1969676852 hasRelatedWork W2072237828 @default.
- W1969676852 hasRelatedWork W2088492992 @default.
- W1969676852 hasRelatedWork W2109240454 @default.
- W1969676852 hasRelatedWork W2405328949 @default.
- W1969676852 hasRelatedWork W2885817778 @default.
- W1969676852 hasRelatedWork W3021589997 @default.
- W1969676852 hasRelatedWork W4320494653 @default.
- W1969676852 hasRelatedWork W90450723 @default.
- W1969676852 hasVolume "103" @default.
- W1969676852 isParatext "false" @default.
- W1969676852 isRetracted "false" @default.
- W1969676852 magId "1969676852" @default.
- W1969676852 workType "article" @default.