Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969797673> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1969797673 endingPage "2635" @default.
- W1969797673 startingPage "2627" @default.
- W1969797673 abstract "This paper deals with the use of neural network rule extraction techniques based on the Genetic Programming (GP) to build intelligent and explanatory evaluation systems. Recent development in algorithms that extract rules from trained neural networks enable us to generate classification rules in spite of their intrinsically black-box nature. However, in the original decompositional method looking at the internal structure of the networks, the comprehensive methods combining the output to the inputs using parameters are complicated. Then, in our paper, we utilized the GP to automatize the rule extraction process in the trained neural networks where the statements changed into a binary classification. Even though the production (classification) rule generation based on the GP alone are applicable straightforward to the underlying problems for decision making, but in the original GP method production rules include many statements described by arithmetic expressions as well as basic logical expressions, and it makes the rule generation process very complicated. Therefore, we utilize the neural network and binary classification to obtain simple and relevant classification rules in real applications by avoiding straightforward applications of the GP procedure to the arithmetic expressions. At first, the pruning process of weight among neurons is applied to obtain simple but substantial binary expressions which are used as statements is classification rules. Then, the GP is applied to generate ultimate rules. As applications, we generate rules to prediction of bankruptcy and creditworthiness for binary classifications, and the apply the method to multi-level classification of corporate bonds (rating) by using the financial indicators." @default.
- W1969797673 created "2016-06-24" @default.
- W1969797673 creator A5005363886 @default.
- W1969797673 date "2005-10-01" @default.
- W1969797673 modified "2023-10-14" @default.
- W1969797673 title "Neural Network Rule Extraction by Using the Genetic Programming and Its Applications to Explanatory Classifications" @default.
- W1969797673 doi "https://doi.org/10.1093/ietfec/e88-a.10.2627" @default.
- W1969797673 hasPublicationYear "2005" @default.
- W1969797673 type Work @default.
- W1969797673 sameAs 1969797673 @default.
- W1969797673 citedByCount "13" @default.
- W1969797673 countsByYear W19697976732014 @default.
- W1969797673 countsByYear W19697976732021 @default.
- W1969797673 crossrefType "journal-article" @default.
- W1969797673 hasAuthorship W1969797673A5005363886 @default.
- W1969797673 hasConcept C108010975 @default.
- W1969797673 hasConcept C110332635 @default.
- W1969797673 hasConcept C111472728 @default.
- W1969797673 hasConcept C111919701 @default.
- W1969797673 hasConcept C119857082 @default.
- W1969797673 hasConcept C12267149 @default.
- W1969797673 hasConcept C124101348 @default.
- W1969797673 hasConcept C138885662 @default.
- W1969797673 hasConcept C154945302 @default.
- W1969797673 hasConcept C2780586882 @default.
- W1969797673 hasConcept C33923547 @default.
- W1969797673 hasConcept C41008148 @default.
- W1969797673 hasConcept C48372109 @default.
- W1969797673 hasConcept C50644808 @default.
- W1969797673 hasConcept C6557445 @default.
- W1969797673 hasConcept C66905080 @default.
- W1969797673 hasConcept C84839998 @default.
- W1969797673 hasConcept C86803240 @default.
- W1969797673 hasConcept C94375191 @default.
- W1969797673 hasConcept C98045186 @default.
- W1969797673 hasConceptScore W1969797673C108010975 @default.
- W1969797673 hasConceptScore W1969797673C110332635 @default.
- W1969797673 hasConceptScore W1969797673C111472728 @default.
- W1969797673 hasConceptScore W1969797673C111919701 @default.
- W1969797673 hasConceptScore W1969797673C119857082 @default.
- W1969797673 hasConceptScore W1969797673C12267149 @default.
- W1969797673 hasConceptScore W1969797673C124101348 @default.
- W1969797673 hasConceptScore W1969797673C138885662 @default.
- W1969797673 hasConceptScore W1969797673C154945302 @default.
- W1969797673 hasConceptScore W1969797673C2780586882 @default.
- W1969797673 hasConceptScore W1969797673C33923547 @default.
- W1969797673 hasConceptScore W1969797673C41008148 @default.
- W1969797673 hasConceptScore W1969797673C48372109 @default.
- W1969797673 hasConceptScore W1969797673C50644808 @default.
- W1969797673 hasConceptScore W1969797673C6557445 @default.
- W1969797673 hasConceptScore W1969797673C66905080 @default.
- W1969797673 hasConceptScore W1969797673C84839998 @default.
- W1969797673 hasConceptScore W1969797673C86803240 @default.
- W1969797673 hasConceptScore W1969797673C94375191 @default.
- W1969797673 hasConceptScore W1969797673C98045186 @default.
- W1969797673 hasIssue "10" @default.
- W1969797673 hasLocation W19697976731 @default.
- W1969797673 hasOpenAccess W1969797673 @default.
- W1969797673 hasPrimaryLocation W19697976731 @default.
- W1969797673 hasRelatedWork W1969797673 @default.
- W1969797673 hasRelatedWork W2033288131 @default.
- W1969797673 hasRelatedWork W2084779923 @default.
- W1969797673 hasRelatedWork W2140225375 @default.
- W1969797673 hasRelatedWork W2356357271 @default.
- W1969797673 hasRelatedWork W303977551 @default.
- W1969797673 hasRelatedWork W3120374695 @default.
- W1969797673 hasRelatedWork W3199608561 @default.
- W1969797673 hasRelatedWork W3212578714 @default.
- W1969797673 hasRelatedWork W1629725936 @default.
- W1969797673 hasVolume "E88-A" @default.
- W1969797673 isParatext "false" @default.
- W1969797673 isRetracted "false" @default.
- W1969797673 magId "1969797673" @default.
- W1969797673 workType "article" @default.