Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969827863> ?p ?o ?g. }
- W1969827863 endingPage "1852" @default.
- W1969827863 startingPage "1790" @default.
- W1969827863 abstract "We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose Hubbard model, Dicke model and others." @default.
- W1969827863 created "2016-06-24" @default.
- W1969827863 creator A5025748256 @default.
- W1969827863 date "2010-08-01" @default.
- W1969827863 modified "2023-10-16" @default.
- W1969827863 title "Phase space representation of quantum dynamics" @default.
- W1969827863 cites W1491015100 @default.
- W1969827863 cites W1491693613 @default.
- W1969827863 cites W1494113565 @default.
- W1969827863 cites W1584569359 @default.
- W1969827863 cites W1758308251 @default.
- W1969827863 cites W1884836326 @default.
- W1969827863 cites W1966951240 @default.
- W1969827863 cites W1969450150 @default.
- W1969827863 cites W1970391413 @default.
- W1969827863 cites W1979308046 @default.
- W1969827863 cites W1979363087 @default.
- W1969827863 cites W1981659415 @default.
- W1969827863 cites W1982418029 @default.
- W1969827863 cites W1983594218 @default.
- W1969827863 cites W1983624953 @default.
- W1969827863 cites W1986168108 @default.
- W1969827863 cites W1987368538 @default.
- W1969827863 cites W1993152921 @default.
- W1969827863 cites W1997598418 @default.
- W1969827863 cites W2002100581 @default.
- W1969827863 cites W2007473024 @default.
- W1969827863 cites W2009146676 @default.
- W1969827863 cites W2011366844 @default.
- W1969827863 cites W2013266523 @default.
- W1969827863 cites W2014097873 @default.
- W1969827863 cites W2015015107 @default.
- W1969827863 cites W2015686922 @default.
- W1969827863 cites W2018445918 @default.
- W1969827863 cites W2019425103 @default.
- W1969827863 cites W2021601715 @default.
- W1969827863 cites W2034903436 @default.
- W1969827863 cites W2036196303 @default.
- W1969827863 cites W2036249467 @default.
- W1969827863 cites W2037980959 @default.
- W1969827863 cites W2042827511 @default.
- W1969827863 cites W2044792554 @default.
- W1969827863 cites W2044922368 @default.
- W1969827863 cites W2049202763 @default.
- W1969827863 cites W2049436053 @default.
- W1969827863 cites W2049883489 @default.
- W1969827863 cites W2054222030 @default.
- W1969827863 cites W2056266391 @default.
- W1969827863 cites W2056589072 @default.
- W1969827863 cites W2062064852 @default.
- W1969827863 cites W2063075672 @default.
- W1969827863 cites W2063599233 @default.
- W1969827863 cites W2064242436 @default.
- W1969827863 cites W2068983504 @default.
- W1969827863 cites W2070586827 @default.
- W1969827863 cites W2070784920 @default.
- W1969827863 cites W2081794289 @default.
- W1969827863 cites W2084587215 @default.
- W1969827863 cites W2087919772 @default.
- W1969827863 cites W2089337479 @default.
- W1969827863 cites W2089738232 @default.
- W1969827863 cites W2105614108 @default.
- W1969827863 cites W2111804043 @default.
- W1969827863 cites W2125303188 @default.
- W1969827863 cites W2134782445 @default.
- W1969827863 cites W2162920910 @default.
- W1969827863 cites W2170649178 @default.
- W1969827863 cites W3098200098 @default.
- W1969827863 cites W3100303240 @default.
- W1969827863 cites W3101358175 @default.
- W1969827863 cites W3104871600 @default.
- W1969827863 cites W3105338906 @default.
- W1969827863 cites W3105862504 @default.
- W1969827863 cites W3124318080 @default.
- W1969827863 cites W3165898261 @default.
- W1969827863 cites W4231362780 @default.
- W1969827863 cites W4233369467 @default.
- W1969827863 cites W4376849742 @default.
- W1969827863 cites W2110699846 @default.
- W1969827863 doi "https://doi.org/10.1016/j.aop.2010.02.006" @default.
- W1969827863 hasPublicationYear "2010" @default.
- W1969827863 type Work @default.
- W1969827863 sameAs 1969827863 @default.
- W1969827863 citedByCount "377" @default.
- W1969827863 countsByYear W19698278632012 @default.
- W1969827863 countsByYear W19698278632013 @default.
- W1969827863 countsByYear W19698278632014 @default.
- W1969827863 countsByYear W19698278632015 @default.
- W1969827863 countsByYear W19698278632016 @default.
- W1969827863 countsByYear W19698278632017 @default.
- W1969827863 countsByYear W19698278632018 @default.
- W1969827863 countsByYear W19698278632019 @default.
- W1969827863 countsByYear W19698278632020 @default.
- W1969827863 countsByYear W19698278632021 @default.
- W1969827863 countsByYear W19698278632022 @default.
- W1969827863 countsByYear W19698278632023 @default.
- W1969827863 crossrefType "journal-article" @default.
- W1969827863 hasAuthorship W1969827863A5025748256 @default.