Matches in SemOpenAlex for { <https://semopenalex.org/work/W1969923930> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1969923930 endingPage "380" @default.
- W1969923930 startingPage "377" @default.
- W1969923930 abstract "A new methodology combining the advanced extreme learning machine (ELM) and harmony search (HS) was proposed to model and optimize the operational parameters of the boiler for the control of NOX emissions in a 700 MW pulverized coal-fired power plant. About five days’ worth of real data were obtained from supervisory information system (SIS) of the power plant to build the ELM NOX model. HS was employed to optimize the operational parameters of the boiler to minimize NOX emissions based on the prediction of NOX by ELM. Compared with the widely used learning method such as ANN and SVR, ELM performed better both in accuracy and computing time for the modeling of NOX emission. The proposed comprehensive methodology can provide desired and feasible optimal solutions within one second, which is acceptable for the online optimization." @default.
- W1969923930 created "2016-06-24" @default.
- W1969923930 creator A5000626064 @default.
- W1969923930 creator A5007140138 @default.
- W1969923930 creator A5042031882 @default.
- W1969923930 creator A5071128326 @default.
- W1969923930 creator A5089170980 @default.
- W1969923930 date "2014-01-01" @default.
- W1969923930 modified "2023-09-30" @default.
- W1969923930 title "Modeling and Optimization of NOX Emission in a Coal-fired Power Plant using Advanced Machine Learning Methods" @default.
- W1969923930 cites W1967958566 @default.
- W1969923930 cites W1993352927 @default.
- W1969923930 cites W1993885071 @default.
- W1969923930 cites W2026131661 @default.
- W1969923930 cites W2030477110 @default.
- W1969923930 cites W2037523347 @default.
- W1969923930 cites W2059433485 @default.
- W1969923930 cites W2095089989 @default.
- W1969923930 cites W2159772788 @default.
- W1969923930 doi "https://doi.org/10.1016/j.egypro.2014.11.1129" @default.
- W1969923930 hasPublicationYear "2014" @default.
- W1969923930 type Work @default.
- W1969923930 sameAs 1969923930 @default.
- W1969923930 citedByCount "14" @default.
- W1969923930 countsByYear W19699239302019 @default.
- W1969923930 countsByYear W19699239302020 @default.
- W1969923930 countsByYear W19699239302021 @default.
- W1969923930 countsByYear W19699239302022 @default.
- W1969923930 countsByYear W19699239302023 @default.
- W1969923930 crossrefType "journal-article" @default.
- W1969923930 hasAuthorship W1969923930A5000626064 @default.
- W1969923930 hasAuthorship W1969923930A5007140138 @default.
- W1969923930 hasAuthorship W1969923930A5042031882 @default.
- W1969923930 hasAuthorship W1969923930A5071128326 @default.
- W1969923930 hasAuthorship W1969923930A5089170980 @default.
- W1969923930 hasBestOaLocation W19699239301 @default.
- W1969923930 hasConcept C105923489 @default.
- W1969923930 hasConcept C119599485 @default.
- W1969923930 hasConcept C127413603 @default.
- W1969923930 hasConcept C171146098 @default.
- W1969923930 hasConcept C178790620 @default.
- W1969923930 hasConcept C185592680 @default.
- W1969923930 hasConcept C203032635 @default.
- W1969923930 hasConcept C2039551 @default.
- W1969923930 hasConcept C21880701 @default.
- W1969923930 hasConcept C2780013297 @default.
- W1969923930 hasConcept C41888846 @default.
- W1969923930 hasConcept C4311470 @default.
- W1969923930 hasConcept C518851703 @default.
- W1969923930 hasConcept C548081761 @default.
- W1969923930 hasConceptScore W1969923930C105923489 @default.
- W1969923930 hasConceptScore W1969923930C119599485 @default.
- W1969923930 hasConceptScore W1969923930C127413603 @default.
- W1969923930 hasConceptScore W1969923930C171146098 @default.
- W1969923930 hasConceptScore W1969923930C178790620 @default.
- W1969923930 hasConceptScore W1969923930C185592680 @default.
- W1969923930 hasConceptScore W1969923930C203032635 @default.
- W1969923930 hasConceptScore W1969923930C2039551 @default.
- W1969923930 hasConceptScore W1969923930C21880701 @default.
- W1969923930 hasConceptScore W1969923930C2780013297 @default.
- W1969923930 hasConceptScore W1969923930C41888846 @default.
- W1969923930 hasConceptScore W1969923930C4311470 @default.
- W1969923930 hasConceptScore W1969923930C518851703 @default.
- W1969923930 hasConceptScore W1969923930C548081761 @default.
- W1969923930 hasLocation W19699239301 @default.
- W1969923930 hasOpenAccess W1969923930 @default.
- W1969923930 hasPrimaryLocation W19699239301 @default.
- W1969923930 hasRelatedWork W2353137217 @default.
- W1969923930 hasRelatedWork W2354902430 @default.
- W1969923930 hasRelatedWork W2361625208 @default.
- W1969923930 hasRelatedWork W2368392490 @default.
- W1969923930 hasRelatedWork W2376524539 @default.
- W1969923930 hasRelatedWork W2385897795 @default.
- W1969923930 hasRelatedWork W2389765579 @default.
- W1969923930 hasRelatedWork W2400651816 @default.
- W1969923930 hasRelatedWork W2692836218 @default.
- W1969923930 hasRelatedWork W2890828646 @default.
- W1969923930 hasVolume "61" @default.
- W1969923930 isParatext "false" @default.
- W1969923930 isRetracted "false" @default.
- W1969923930 magId "1969923930" @default.
- W1969923930 workType "article" @default.