Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970065340> ?p ?o ?g. }
- W1970065340 endingPage "57" @default.
- W1970065340 startingPage "44" @default.
- W1970065340 abstract "The software defect prediction during software development has recently attracted the attention of many researchers. The software defect density indicator prediction in each phase of software development life cycle (SDLC) is desirable for developing a reliable software product. Software defect prediction at the end of testing phase may not be more beneficial because the changes need to be performed in the previous phases of SDLC may require huge amount of money and effort to be spent in order to achieve target software quality. Therefore, phase-wise software defect density indicator prediction model is of great importance. In this paper, a fuzzy logic based phase-wise software defect prediction model is proposed using the top most reliability relevant metrics of the each phase of the SDLC. In the proposed model, defect density indicator in requirement analysis, design, coding and testing phase is predicted using nine software metrics of these four phases. The defect density indicator metric predicted at the end of the each phase is also taken as an input to the next phase. Software metrics are assessed in linguistic terms and fuzzy inference system has been employed to develop the model. The predictive accuracy of the proposed model is validated using twenty real software project data. Validation results are satisfactory. Measures based on the mean magnitude of relative error and balanced mean magnitude of relative error decrease significantly as the software project size increases. In this paper, a fuzzy logic based model is proposed for predicting software defect density indicator at each phase of the SDLC. The predicted defects of twenty different software projects are found very near to the actual defects detected during testing. The predicted defect density indicators are very helpful to analyze the defect severity in different artifacts of SDLC of a software project." @default.
- W1970065340 created "2016-06-24" @default.
- W1970065340 creator A5042648996 @default.
- W1970065340 creator A5072035398 @default.
- W1970065340 date "2015-07-01" @default.
- W1970065340 modified "2023-10-17" @default.
- W1970065340 title "A fuzzy logic based approach for phase-wise software defects prediction using software metrics" @default.
- W1970065340 cites W1964962870 @default.
- W1970065340 cites W1966433245 @default.
- W1970065340 cites W1972467266 @default.
- W1970065340 cites W1979293491 @default.
- W1970065340 cites W2003089185 @default.
- W1970065340 cites W2017439596 @default.
- W1970065340 cites W2039799568 @default.
- W1970065340 cites W2063140383 @default.
- W1970065340 cites W2063461361 @default.
- W1970065340 cites W2074805796 @default.
- W1970065340 cites W2081025867 @default.
- W1970065340 cites W2084760406 @default.
- W1970065340 cites W2099919734 @default.
- W1970065340 cites W2101728371 @default.
- W1970065340 cites W2119404364 @default.
- W1970065340 cites W2127623179 @default.
- W1970065340 cites W2127982691 @default.
- W1970065340 cites W2129019011 @default.
- W1970065340 cites W2131891947 @default.
- W1970065340 cites W2132901515 @default.
- W1970065340 cites W2133575467 @default.
- W1970065340 cites W2134517964 @default.
- W1970065340 cites W2135452472 @default.
- W1970065340 cites W2138633784 @default.
- W1970065340 cites W2144336317 @default.
- W1970065340 cites W2151666086 @default.
- W1970065340 cites W2152708262 @default.
- W1970065340 cites W2160988203 @default.
- W1970065340 cites W2167714470 @default.
- W1970065340 cites W2170555940 @default.
- W1970065340 cites W4250180333 @default.
- W1970065340 cites W567451370 @default.
- W1970065340 doi "https://doi.org/10.1016/j.infsof.2015.03.001" @default.
- W1970065340 hasPublicationYear "2015" @default.
- W1970065340 type Work @default.
- W1970065340 sameAs 1970065340 @default.
- W1970065340 citedByCount "77" @default.
- W1970065340 countsByYear W19700653402015 @default.
- W1970065340 countsByYear W19700653402016 @default.
- W1970065340 countsByYear W19700653402017 @default.
- W1970065340 countsByYear W19700653402018 @default.
- W1970065340 countsByYear W19700653402019 @default.
- W1970065340 countsByYear W19700653402020 @default.
- W1970065340 countsByYear W19700653402021 @default.
- W1970065340 countsByYear W19700653402022 @default.
- W1970065340 countsByYear W19700653402023 @default.
- W1970065340 crossrefType "journal-article" @default.
- W1970065340 hasAuthorship W1970065340A5042648996 @default.
- W1970065340 hasAuthorship W1970065340A5072035398 @default.
- W1970065340 hasConcept C105795698 @default.
- W1970065340 hasConcept C117447612 @default.
- W1970065340 hasConcept C120617098 @default.
- W1970065340 hasConcept C124101348 @default.
- W1970065340 hasConcept C127413603 @default.
- W1970065340 hasConcept C176217482 @default.
- W1970065340 hasConcept C186846655 @default.
- W1970065340 hasConcept C199360897 @default.
- W1970065340 hasConcept C200601418 @default.
- W1970065340 hasConcept C201515116 @default.
- W1970065340 hasConcept C21547014 @default.
- W1970065340 hasConcept C2777904410 @default.
- W1970065340 hasConcept C33923547 @default.
- W1970065340 hasConcept C41008148 @default.
- W1970065340 hasConcept C48002344 @default.
- W1970065340 hasConcept C529173508 @default.
- W1970065340 hasConcept C52928878 @default.
- W1970065340 hasConcept C82214349 @default.
- W1970065340 hasConceptScore W1970065340C105795698 @default.
- W1970065340 hasConceptScore W1970065340C117447612 @default.
- W1970065340 hasConceptScore W1970065340C120617098 @default.
- W1970065340 hasConceptScore W1970065340C124101348 @default.
- W1970065340 hasConceptScore W1970065340C127413603 @default.
- W1970065340 hasConceptScore W1970065340C176217482 @default.
- W1970065340 hasConceptScore W1970065340C186846655 @default.
- W1970065340 hasConceptScore W1970065340C199360897 @default.
- W1970065340 hasConceptScore W1970065340C200601418 @default.
- W1970065340 hasConceptScore W1970065340C201515116 @default.
- W1970065340 hasConceptScore W1970065340C21547014 @default.
- W1970065340 hasConceptScore W1970065340C2777904410 @default.
- W1970065340 hasConceptScore W1970065340C33923547 @default.
- W1970065340 hasConceptScore W1970065340C41008148 @default.
- W1970065340 hasConceptScore W1970065340C48002344 @default.
- W1970065340 hasConceptScore W1970065340C529173508 @default.
- W1970065340 hasConceptScore W1970065340C52928878 @default.
- W1970065340 hasConceptScore W1970065340C82214349 @default.
- W1970065340 hasLocation W19700653401 @default.
- W1970065340 hasOpenAccess W1970065340 @default.
- W1970065340 hasPrimaryLocation W19700653401 @default.
- W1970065340 hasRelatedWork W2070983362 @default.
- W1970065340 hasRelatedWork W2181390869 @default.
- W1970065340 hasRelatedWork W2495780759 @default.