Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970079504> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W1970079504 endingPage "223" @default.
- W1970079504 startingPage "211" @default.
- W1970079504 abstract "In this study the machining of AISI 1030 steel (i.e. orthogonal cutting) uncoated, PVD- and CVD-coated cemented carbide insert with different feed rates of 0.25, 0.30, 0.35, 0.40 and 0.45 mm/rev with the cutting speeds of 100, 200 and 300 m/min by keeping depth of cuts constant (i.e. 2 mm), without using cooling liquids has been accomplished. The surface roughness effects of coating method, coating material, cutting speed and feed rate on the workpiece have been investigated. Among the cutting tools—with 200 mm/min cutting speed and 0.25 mm/rev feed rate—the TiN coated with PVD method has provided 2.16 μm, TiAlN coated with PVD method has provided 2.3 μm, AlTiN coated with PVD method has provided 2.46 μm surface roughness values, respectively. While the uncoated cutting tool with the cutting speed of 100 m/min and 0.25 mm/rev feed rate has yielded the surface roughness value of 2.45 μm. Afterwards, these experimental studies were executed on artificial neural networks (ANN). The training and test data of the ANNs have been prepared using experimental patterns for the surface roughness. In the input layer of the ANNs, the coating tools, feed rate (f) and cutting speed (V) values are used while at the output layer the surface roughness values are used. They are used to train and test multilayered, hierarchically connected and directed networks with varying numbers of the hidden layers using back-propagation scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) algorithms with the logistic sigmoid transfer function. The experimental values and ANN predictions are compared by statistical error analyzing methods. It is shown that the SCG model with nine neurons in the hidden layer has produced absolute fraction of variance (R2) values about 0.99985 for the training data, and 0.99983 for the test data; root mean square error (RMSE) values are smaller than 0.00265; and mean error percentage (MEP) are about 1.13458 and 1.88698 for the training and test data, respectively. Therefore, the surface roughness value has been determined by the ANN with an acceptable accuracy." @default.
- W1970079504 created "2016-06-24" @default.
- W1970079504 creator A5003899436 @default.
- W1970079504 creator A5020422650 @default.
- W1970079504 creator A5056964681 @default.
- W1970079504 creator A5068602653 @default.
- W1970079504 date "2009-02-01" @default.
- W1970079504 modified "2023-10-05" @default.
- W1970079504 title "The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks" @default.
- W1970079504 cites W1982518978 @default.
- W1970079504 cites W1983532561 @default.
- W1970079504 cites W1984077873 @default.
- W1970079504 cites W1992024397 @default.
- W1970079504 cites W1992473946 @default.
- W1970079504 cites W1999209109 @default.
- W1970079504 cites W2005637097 @default.
- W1970079504 cites W2009773709 @default.
- W1970079504 cites W2010847571 @default.
- W1970079504 cites W2032082108 @default.
- W1970079504 cites W2038814298 @default.
- W1970079504 cites W2041691843 @default.
- W1970079504 cites W2044506241 @default.
- W1970079504 cites W2048167874 @default.
- W1970079504 cites W2068561948 @default.
- W1970079504 cites W2072298485 @default.
- W1970079504 cites W2072478339 @default.
- W1970079504 cites W2082166137 @default.
- W1970079504 cites W2082724578 @default.
- W1970079504 cites W2094460193 @default.
- W1970079504 cites W2136459762 @default.
- W1970079504 cites W2163595556 @default.
- W1970079504 cites W4249954177 @default.
- W1970079504 doi "https://doi.org/10.1016/j.rcim.2007.11.004" @default.
- W1970079504 hasPublicationYear "2009" @default.
- W1970079504 type Work @default.
- W1970079504 sameAs 1970079504 @default.
- W1970079504 citedByCount "115" @default.
- W1970079504 countsByYear W19700795042012 @default.
- W1970079504 countsByYear W19700795042013 @default.
- W1970079504 countsByYear W19700795042014 @default.
- W1970079504 countsByYear W19700795042015 @default.
- W1970079504 countsByYear W19700795042016 @default.
- W1970079504 countsByYear W19700795042017 @default.
- W1970079504 countsByYear W19700795042018 @default.
- W1970079504 countsByYear W19700795042019 @default.
- W1970079504 countsByYear W19700795042020 @default.
- W1970079504 countsByYear W19700795042021 @default.
- W1970079504 countsByYear W19700795042022 @default.
- W1970079504 countsByYear W19700795042023 @default.
- W1970079504 crossrefType "journal-article" @default.
- W1970079504 hasAuthorship W1970079504A5003899436 @default.
- W1970079504 hasAuthorship W1970079504A5020422650 @default.
- W1970079504 hasAuthorship W1970079504A5056964681 @default.
- W1970079504 hasAuthorship W1970079504A5068602653 @default.
- W1970079504 hasConcept C107365816 @default.
- W1970079504 hasConcept C159985019 @default.
- W1970079504 hasConcept C191897082 @default.
- W1970079504 hasConcept C192562407 @default.
- W1970079504 hasConcept C2776111599 @default.
- W1970079504 hasConcept C2779715934 @default.
- W1970079504 hasConcept C2780383046 @default.
- W1970079504 hasConcept C2781448156 @default.
- W1970079504 hasConcept C523214423 @default.
- W1970079504 hasConcept C525849907 @default.
- W1970079504 hasConcept C5335593 @default.
- W1970079504 hasConcept C71039073 @default.
- W1970079504 hasConceptScore W1970079504C107365816 @default.
- W1970079504 hasConceptScore W1970079504C159985019 @default.
- W1970079504 hasConceptScore W1970079504C191897082 @default.
- W1970079504 hasConceptScore W1970079504C192562407 @default.
- W1970079504 hasConceptScore W1970079504C2776111599 @default.
- W1970079504 hasConceptScore W1970079504C2779715934 @default.
- W1970079504 hasConceptScore W1970079504C2780383046 @default.
- W1970079504 hasConceptScore W1970079504C2781448156 @default.
- W1970079504 hasConceptScore W1970079504C523214423 @default.
- W1970079504 hasConceptScore W1970079504C525849907 @default.
- W1970079504 hasConceptScore W1970079504C5335593 @default.
- W1970079504 hasConceptScore W1970079504C71039073 @default.
- W1970079504 hasIssue "1" @default.
- W1970079504 hasLocation W19700795041 @default.
- W1970079504 hasOpenAccess W1970079504 @default.
- W1970079504 hasPrimaryLocation W19700795041 @default.
- W1970079504 hasRelatedWork W125044670 @default.
- W1970079504 hasRelatedWork W1982963433 @default.
- W1970079504 hasRelatedWork W2071550242 @default.
- W1970079504 hasRelatedWork W2095929869 @default.
- W1970079504 hasRelatedWork W2187040105 @default.
- W1970079504 hasRelatedWork W2378486705 @default.
- W1970079504 hasRelatedWork W2584504420 @default.
- W1970079504 hasRelatedWork W2983523984 @default.
- W1970079504 hasRelatedWork W4285238427 @default.
- W1970079504 hasRelatedWork W2188068151 @default.
- W1970079504 hasVolume "25" @default.
- W1970079504 isParatext "false" @default.
- W1970079504 isRetracted "false" @default.
- W1970079504 magId "1970079504" @default.
- W1970079504 workType "article" @default.