Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970142351> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1970142351 abstract "The human visual cortex is extremely adept at distinguishing between male and female faces, or performing Gender Classification. While the subject of face detection and recognition has received a lot of focus, research into the features or cognitive processes that are useful for identifying gender have received relatively little attention. Researchers have attempted to extract hand crafted features like wavelet coefficients, histograms etc. on the basis of which to generate a model to classify the male and female faces. However, these models tend to compress the image into a vector and disregard the two dimensional spatial correlations between the pixels in an image. Additionally, these features have to hand crafted and may or may not be ideal for the classification at hand. Ideally, the system should be able to generate specific features from the input face image which would help in classification of male faces from female faces. In this paper and a Deep Convolution Neural Network (CNN) model is presented for gender classification. The features generated by the CNN appear to agree with known results from the cognitive science community indicating that these models may be closer to biological neuronal processes governing gender classification. The classification results are compared with different regularization techniques and other standard classifiers, and the CNN models yield higher accuracy than both svms and random forest classifiers." @default.
- W1970142351 created "2016-06-24" @default.
- W1970142351 creator A5006570988 @default.
- W1970142351 creator A5071894271 @default.
- W1970142351 date "2014-09-01" @default.
- W1970142351 modified "2023-10-17" @default.
- W1970142351 title "Using Convolutional Neural Networks to Discover Cogntively Validated Features for Gender Classification" @default.
- W1970142351 cites W1984849553 @default.
- W1970142351 cites W1997653170 @default.
- W1970142351 cites W1999236582 @default.
- W1970142351 cites W2019111214 @default.
- W1970142351 cites W2019621046 @default.
- W1970142351 cites W2038289640 @default.
- W1970142351 cites W2046951387 @default.
- W1970142351 cites W2059683414 @default.
- W1970142351 cites W2082457352 @default.
- W1970142351 cites W2103212315 @default.
- W1970142351 cites W2112796928 @default.
- W1970142351 cites W2120284346 @default.
- W1970142351 cites W2133284182 @default.
- W1970142351 cites W2141125852 @default.
- W1970142351 cites W2142187478 @default.
- W1970142351 cites W2146308415 @default.
- W1970142351 cites W2156163116 @default.
- W1970142351 cites W2168893862 @default.
- W1970142351 doi "https://doi.org/10.1109/iscmi.2014.17" @default.
- W1970142351 hasPublicationYear "2014" @default.
- W1970142351 type Work @default.
- W1970142351 sameAs 1970142351 @default.
- W1970142351 citedByCount "14" @default.
- W1970142351 countsByYear W19701423512016 @default.
- W1970142351 countsByYear W19701423512017 @default.
- W1970142351 countsByYear W19701423512020 @default.
- W1970142351 countsByYear W19701423512021 @default.
- W1970142351 crossrefType "proceedings-article" @default.
- W1970142351 hasAuthorship W1970142351A5006570988 @default.
- W1970142351 hasAuthorship W1970142351A5071894271 @default.
- W1970142351 hasConcept C115961682 @default.
- W1970142351 hasConcept C119857082 @default.
- W1970142351 hasConcept C12267149 @default.
- W1970142351 hasConcept C144024400 @default.
- W1970142351 hasConcept C153180895 @default.
- W1970142351 hasConcept C154945302 @default.
- W1970142351 hasConcept C160633673 @default.
- W1970142351 hasConcept C169258074 @default.
- W1970142351 hasConcept C2779304628 @default.
- W1970142351 hasConcept C36289849 @default.
- W1970142351 hasConcept C41008148 @default.
- W1970142351 hasConcept C52622490 @default.
- W1970142351 hasConcept C53533937 @default.
- W1970142351 hasConcept C75294576 @default.
- W1970142351 hasConcept C81363708 @default.
- W1970142351 hasConceptScore W1970142351C115961682 @default.
- W1970142351 hasConceptScore W1970142351C119857082 @default.
- W1970142351 hasConceptScore W1970142351C12267149 @default.
- W1970142351 hasConceptScore W1970142351C144024400 @default.
- W1970142351 hasConceptScore W1970142351C153180895 @default.
- W1970142351 hasConceptScore W1970142351C154945302 @default.
- W1970142351 hasConceptScore W1970142351C160633673 @default.
- W1970142351 hasConceptScore W1970142351C169258074 @default.
- W1970142351 hasConceptScore W1970142351C2779304628 @default.
- W1970142351 hasConceptScore W1970142351C36289849 @default.
- W1970142351 hasConceptScore W1970142351C41008148 @default.
- W1970142351 hasConceptScore W1970142351C52622490 @default.
- W1970142351 hasConceptScore W1970142351C53533937 @default.
- W1970142351 hasConceptScore W1970142351C75294576 @default.
- W1970142351 hasConceptScore W1970142351C81363708 @default.
- W1970142351 hasLocation W19701423511 @default.
- W1970142351 hasOpenAccess W1970142351 @default.
- W1970142351 hasPrimaryLocation W19701423511 @default.
- W1970142351 hasRelatedWork W2028968693 @default.
- W1970142351 hasRelatedWork W2412645770 @default.
- W1970142351 hasRelatedWork W2732542196 @default.
- W1970142351 hasRelatedWork W2940977206 @default.
- W1970142351 hasRelatedWork W2969680539 @default.
- W1970142351 hasRelatedWork W2999548501 @default.
- W1970142351 hasRelatedWork W2999842097 @default.
- W1970142351 hasRelatedWork W3004377704 @default.
- W1970142351 hasRelatedWork W3005023910 @default.
- W1970142351 hasRelatedWork W3156786002 @default.
- W1970142351 isParatext "false" @default.
- W1970142351 isRetracted "false" @default.
- W1970142351 magId "1970142351" @default.
- W1970142351 workType "article" @default.