Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970171880> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1970171880 endingPage "574" @default.
- W1970171880 startingPage "571" @default.
- W1970171880 abstract "To the Editor: “Retinitis pigmentosa” (RP) is the term used to define a clinically and genetically heterogeneous group of retinal degenerations primarily affecting the rod photoreceptors. RP is characterized by progressive loss of vision, initially manifesting as night blindness and reduction in the peripheral visual field and later involving loss of central vision (Bird Bird, 1995Bird AC Retinal photoreceptor dystrophies.Am J Ophthalmol. 1995; 119: 543-562Abstract Full Text PDF PubMed Scopus (185) Google Scholar). Ophthalmoscopic examination typically reveals pigmentary disturbances of the mid-peripheral retina. RP may be inherited as an autosomal recessive, autosomal dominant, digenic, or X-linked trait. Autosomal recessive RP (arRP) accounts for ∼20% of all cases of RP, whereas sporadic RP, which is presumed to be recessive in most cases, accounts for a further 50% (Jay Jay, 1982Jay M On the heredity of retinitis pigmentosa.Br J Ophthalmol. 1982; 66: 405-416Crossref PubMed Scopus (130) Google Scholar). Mutations causing arRP have been found in the genes encoding rhodopsin (Rosenfeld et al. Rosenfeld et al., 1992Rosenfeld P Cowley G McGee T Sandberg M Berson E Dryja T A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis-pigmentosa.Nat Genet. 1992; 1: 209-213Crossref PubMed Scopus (317) Google Scholar), in the α and β subunits of rod phosphodiesterase (Huang et al. Huang et al., 1995Huang SH Pittler SJ Huang X Oliveira L Berson EL Dryja TP Autosomal recessive retinitis pigmentosa caused by mutations in the a subunit of rod cGMP phosphodiesterase.Nat Genet. 1995; 11: 468-471Crossref PubMed Scopus (200) Google Scholar; McLaughlin et al. McLaughlin et al., 1995McLaughlin ME Ehrhart TL Berson EL Dryja TP Mutation spectrum of the gene encoding the b subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa.Proc Natl Acad Sci USA. 1995; 92: 3249-3253Crossref PubMed Scopus (255) Google Scholar), in the α subunit of the cyclic-GMP gated–channel protein (Dryja et al. Dryja et al., 1995Dryja TP Finn TJ Peng Y-W McGee TL Berson EL Yau K-W Mutations in the encoding the a subunit of rod cGMP-gated channel in autosomal recessive retinitis pigmentosa.Proc Natl Acad Sci USA. 1995; 92: 10177-10181Crossref PubMed Scopus (234) Google Scholar), and in the genes RPE65 (Gu et al. Gu et al., 1997Gu S-M Thompson DA Srikumari CRS Lorentz B Finckh U Nicoletti A Murthy K et al.Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy.Nat Genet. 1997; 17: 194-197Crossref PubMed Scopus (500) Google Scholar), RLBP1 (Maw et al. Maw et al., 1997Maw MA Kennedy B Knight A Bridges R Roth KE Mani EJ Mukkadan JK et al.Mutations in the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa.Nat Genet. 1997; 17: 198-200Crossref PubMed Scopus (240) Google Scholar), ABCR (Martinez-Mir et al. Martinez-Mir et al., 1998Martinez-Mir A Paloma E Allikmets R Ayuso C del Rio T Dean M Vilageliu L et al.Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR.Nat Genet. 1998; 18: 11-12Crossref PubMed Scopus (314) Google Scholar) and TULP1 (Banerjee et al. Banerjee et al., 1998Banerjee P Kleyn PW Knowles JA Lewis CA Ross BM Parano E Kovats SG et al.“TULIP1” mutation in two recessive extended Dominican kindreds with autosomal recessive retinitis pigmentosa.Nat Genet. 1998; 18: 177-179Crossref PubMed Scopus (119) Google Scholar; Hagstrom et al. Hagstrom et al., 1998Hagstrom SA North MA Nishina PM Berson EL Dryja TP Recessive mutations in the gene encoding the tubby-like protein TULIP1 in patients with retinitis pigmentosa.Nat Genet. 1998; 18: 174-176Crossref PubMed Scopus (158) Google Scholar). In addition, genetic linkage studies have identified arRP loci at 1q31-q32.1 (van Soest et al. van Soest et al., 1994van Soest S van den Born LI Gal A Farrar GJ Bleeker-Wagemakers LM Westerveld A Humphries P et al.Assignment of a gene for autosomal recessive retinitis pigmentosa (RP12) to chromosome 1q31-q32.1 in an inbred and genetically heterogeneous disease population.Genomics. 1994; 22: 499-504Crossref PubMed Scopus (56) Google Scholar; Leutelt et al. Leutelt et al., 1995Leutelt J Oehlmann R Younus F van den Born LI Weber JL Denton MJ Mehdi SQ et al.Autosomal recessive retinitis pigmentosa locus maps on chromosome 1q in a large consanguineous family from Pakistan.Clin Genet. 1995; 47: 122-124Crossref PubMed Scopus (21) Google Scholar), 2q31-q33 (Bayes et al. Bayes et al., 1998Bayes M Goldaracena B Martinez-Mir A Iragui-Madoz MI Solans T Chivelet P Bussaglia E et al.A new autosomal recessive retinitis pigmentosa locus maps on chromosome 2q31-q33.J Med Genet. 1998; 35: 141-145Crossref PubMed Scopus (26) Google Scholar), and 16p12.1-p12.3 (Finckh et al. Finckh et al., 1998Finckh U Xu S Kumaramanickavel G Schürmann M Mukkadan JK Fernandez T John S et al.Homozygosity mapping of autosomal recessive retinitis pigmentosa locus (RP22) on chromosome 16p12.1-p12.3.Genomics. 1998; 48: 341-345Crossref PubMed Scopus (21) Google Scholar). Recently, linkage of arRP to a region on chromosome 6q has been reported in several Spanish families (Ruiz et al. Ruiz et al., 1998Ruiz A Borrego S Marcos I Antiñolo G A major locus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyric acid-receptor clusters.Am J Hum Genet. 1998; 62: 1452-1459Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar). All the above are reference at the RetNet website. We studied 20 members of a three-generation consanguineous Pakistani family in which RP segregated as an autosomal recessive trait (fig. 1). This pedigree contained 12 affected individuals. Examination of all affected individuals revealed the typical clinical features of RP: pigmentary retinopathy associated with symptoms of night blindness and with the loss of peripheral visual fields. Affected subjects experienced night blindness, beginning at age ∼25 years, and deterioration of visual acuity (central vision), beginning at age ∼30 years. By age 55–60 years, many affected subjects had no perception of light in either eye. Genomic DNA for linkage analysis was extracted from the peripheral blood of all 20 individuals in this pedigree (and from 50 unrelated normal individuals of Pakistani origin, who served as controls), by the Nucleon II extraction kit (Scotlab Bioscience). To identify the locus responsible for disease in this family, we performed homozygosity analysis. Genomic DNA from each individual was genotyped for microsatellite markers for all the known arRP loci (RPE65 [1p31], ABCR [1p21-13], 1q31-q32.1, 2q31-q33, RHO [3q21-q24], PDE6B [4p16.3], CNGC [4p14-q13], PDE6A [5q31.2-q34], TULP-1 [6p21.3], 6cen-q15, CRALBP [15q26], and 16p12.1-p12.3). Subsequently, when evidence of linkage was obtained for the 6q locus, further polymorphic markers from this region were analyzed to determine whether analysis of recombinant individuals within the family would permit further refinement of the published disease interval. Marker order was determined from the Généthon sex-averaged genetic map (Dib et al. Dib et al., 1996Dib C Faure S Fizames C Samson D Drouot N Vignal A Millasseau P et al.A comprehensive genetic map of the human genome based on 5,264 microsatellites.Nature. 1996; 380: 152-154Crossref PubMed Scopus (2669) Google Scholar). Primers were obtained from the MapPairs set (Research Genetics), or were synthesized commercially according to data from Genome Database. PCR products were separated by nondenaturing PAGE (Protogel; National Diagnostics) and were visualized under UV illumination after being stained with ethidium bromide. Alleles were assigned to individuals, which allowed calculation of two-point LOD scores by the Cyrillic v2.01 (Cherwell Scientific) and MLINK software programs. Allele frequencies were calculated on the basis of data from the spouses in this family and from an ethnically matched control population. The phenotype was analyzed as an autosomal recessive trait, with complete penetrance and a frequency of .0001 for the disease allele. Significant linkage initially was obtained for three markers on chromosome 6q (table 1). A maximum LOD-score (Zmax) value of 3.30 at recombination fraction (θmax) 0 was observed for markers D6S257 and D6S1053 on chromosome 6q (table 1). Recombination events involving the centromeric marker D6S1053 and the telomeric marker D6S430 subsequently permitted refinement of the 6q arRP (RP25)-disease critical region, from the previously reported 16.1 cM (Ruiz et al. Ruiz et al., 1998Ruiz A Borrego S Marcos I Antiñolo G A major locus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyric acid-receptor clusters.Am J Hum Genet. 1998; 62: 1452-1459Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar) to 2.4 cM (fig. 1).Table 1LOD-Score Calculations for Markers Used to Show Linkage in the FamilyLOD Score at θ =Marker0.01.05.1.2.3.4ZmaxθmaxD6S2410∞1.381.952.031.741.17.472.03.1D6S2942.832.782.602.331.711.04.372.830D6S2573.303.253.022.712.021.26.483.300D6S10533.303.253.012.691.981.21.443.300D6S12752.292.252.071.831.34.82.322.290D6S17111.881.851.721.551.19.77.321.880D6S4021.881.851.721.551.19.77.321.880D6S4303.133.082.882.601.961.23.473.130D6S284∞−.52.09.26.29.19.06.29.2D6S445∞−3.06−1.65−1.03−.43−.14−.02−.02.4D6S275∞−.95−.34−.130.01.01.01.3 Open table in a new tab In their initial linkage report, Ruiz et al. (Ruiz et al., 1998Ruiz A Borrego S Marcos I Antiñolo G A major locus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyric acid-receptor clusters.Am J Hum Genet. 1998; 62: 1452-1459Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar) have suggested, on the basis of a common haplotype for the region surrounding the GABA-receptor candidate genes (GABRR1 and GABRR2) in two families with 6q-linked arRP, that the gene for 6q arRP lies in that region; they therefore have proposed the GABA-receptor candidate genes as candidates for this phenotype. The recombination events seen in the family that we studied exclude both GABRR1 and GABRR2 as the disease gene and exclude the area of homozygosity seen by Ruiz et al. (Ruiz et al., 1998Ruiz A Borrego S Marcos I Antiñolo G A major locus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyric acid-receptor clusters.Am J Hum Genet. 1998; 62: 1452-1459Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar) from the critical disease interval. Figure 2 shows the boundaries of the chromosomal interval containing the 6q arRP gene (RP25), in relation to the critical intervals for other eye disorders mapping to this region. If a single gene underlies arRP in both the Spanish families and the Pakistani family that we studied, then our results indicate that GABA-receptor candidate genes are no longer candidates for this phenotype. However, we cannot exclude the possibility that there are in fact two arRP loci located in close proximity on 6q, one in the Spanish population and one in the Pakistani population. There is no overlap between the locus that we report here and that of the dominant cone-rod dystrophy (CORD 7) (fig. 2). The 2.4-cM critical interval defined by recombination events in the family that we studied contains no well-characterized candidate genes; however, four expressed sequence tags (ESTs) were identified from the human genome transcript map that are expressed in the retina, as were a further 29 ESTs that were of brain origin. These represent the best candidates available at this time. Further analysis of these cDNA clones will be needed before mutation screening in this family can be undertaken. In the past, linkage to many of the loci identified as associated with RP (dominant or recessive) have been reported in single families. The identification of a family of Pakistani origin, in addition to the five Spanish families in which linkage to this locus has been reported by Ruiz et al. (Ruiz et al., 1998Ruiz A Borrego S Marcos I Antiñolo G A major locus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyric acid-receptor clusters.Am J Hum Genet. 1998; 62: 1452-1459Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar), suggests that this may be an important gene in arRP, since the disease occurs in two different ethnic populations and in many different families that, according to haplotype analysis, are not ancestrally related." @default.
- W1970171880 created "2016-06-24" @default.
- W1970171880 creator A5006451534 @default.
- W1970171880 creator A5022070811 @default.
- W1970171880 creator A5062922752 @default.
- W1970171880 creator A5067071609 @default.
- W1970171880 creator A5071143248 @default.
- W1970171880 creator A5079464717 @default.
- W1970171880 creator A5088690626 @default.
- W1970171880 date "1999-08-01" @default.
- W1970171880 modified "2023-09-30" @default.
- W1970171880 title "Refinement of the Locus for Autosomal Recessive Retinitis Pigmentosa (RP25) Linked to Chromosome 6q in a Family of Pakistani Origin" @default.
- W1970171880 cites W1965265115 @default.
- W1970171880 cites W1970335747 @default.
- W1970171880 cites W1980643521 @default.
- W1970171880 cites W1984558436 @default.
- W1970171880 cites W1985682723 @default.
- W1970171880 cites W2000330672 @default.
- W1970171880 cites W2003428013 @default.
- W1970171880 cites W2012582259 @default.
- W1970171880 cites W2022817398 @default.
- W1970171880 cites W2025299744 @default.
- W1970171880 cites W2025368485 @default.
- W1970171880 cites W2025768188 @default.
- W1970171880 cites W2029593699 @default.
- W1970171880 cites W2039102963 @default.
- W1970171880 cites W2086493498 @default.
- W1970171880 cites W2093727178 @default.
- W1970171880 cites W2132919883 @default.
- W1970171880 cites W2158988043 @default.
- W1970171880 doi "https://doi.org/10.1086/302493" @default.
- W1970171880 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1377958" @default.
- W1970171880 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10417302" @default.
- W1970171880 hasPublicationYear "1999" @default.
- W1970171880 type Work @default.
- W1970171880 sameAs 1970171880 @default.
- W1970171880 citedByCount "31" @default.
- W1970171880 countsByYear W19701718802013 @default.
- W1970171880 countsByYear W19701718802015 @default.
- W1970171880 countsByYear W19701718802022 @default.
- W1970171880 countsByYear W19701718802023 @default.
- W1970171880 crossrefType "journal-article" @default.
- W1970171880 hasAuthorship W1970171880A5006451534 @default.
- W1970171880 hasAuthorship W1970171880A5022070811 @default.
- W1970171880 hasAuthorship W1970171880A5062922752 @default.
- W1970171880 hasAuthorship W1970171880A5067071609 @default.
- W1970171880 hasAuthorship W1970171880A5071143248 @default.
- W1970171880 hasAuthorship W1970171880A5079464717 @default.
- W1970171880 hasAuthorship W1970171880A5088690626 @default.
- W1970171880 hasBestOaLocation W19701718801 @default.
- W1970171880 hasConcept C104317684 @default.
- W1970171880 hasConcept C122735190 @default.
- W1970171880 hasConcept C127716648 @default.
- W1970171880 hasConcept C142870003 @default.
- W1970171880 hasConcept C2781114197 @default.
- W1970171880 hasConcept C2993098900 @default.
- W1970171880 hasConcept C30481170 @default.
- W1970171880 hasConcept C54355233 @default.
- W1970171880 hasConcept C63971535 @default.
- W1970171880 hasConcept C64618202 @default.
- W1970171880 hasConcept C84597430 @default.
- W1970171880 hasConcept C86803240 @default.
- W1970171880 hasConceptScore W1970171880C104317684 @default.
- W1970171880 hasConceptScore W1970171880C122735190 @default.
- W1970171880 hasConceptScore W1970171880C127716648 @default.
- W1970171880 hasConceptScore W1970171880C142870003 @default.
- W1970171880 hasConceptScore W1970171880C2781114197 @default.
- W1970171880 hasConceptScore W1970171880C2993098900 @default.
- W1970171880 hasConceptScore W1970171880C30481170 @default.
- W1970171880 hasConceptScore W1970171880C54355233 @default.
- W1970171880 hasConceptScore W1970171880C63971535 @default.
- W1970171880 hasConceptScore W1970171880C64618202 @default.
- W1970171880 hasConceptScore W1970171880C84597430 @default.
- W1970171880 hasConceptScore W1970171880C86803240 @default.
- W1970171880 hasIssue "2" @default.
- W1970171880 hasLocation W19701718801 @default.
- W1970171880 hasLocation W19701718802 @default.
- W1970171880 hasLocation W19701718803 @default.
- W1970171880 hasLocation W19701718804 @default.
- W1970171880 hasOpenAccess W1970171880 @default.
- W1970171880 hasPrimaryLocation W19701718801 @default.
- W1970171880 hasRelatedWork W1905960701 @default.
- W1970171880 hasRelatedWork W1977132553 @default.
- W1970171880 hasRelatedWork W1988531580 @default.
- W1970171880 hasRelatedWork W2000330672 @default.
- W1970171880 hasRelatedWork W2012801314 @default.
- W1970171880 hasRelatedWork W2058209790 @default.
- W1970171880 hasRelatedWork W2064453766 @default.
- W1970171880 hasRelatedWork W2072808544 @default.
- W1970171880 hasRelatedWork W2397512078 @default.
- W1970171880 hasRelatedWork W182109739 @default.
- W1970171880 hasVolume "65" @default.
- W1970171880 isParatext "false" @default.
- W1970171880 isRetracted "false" @default.
- W1970171880 magId "1970171880" @default.
- W1970171880 workType "article" @default.