Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970202449> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W1970202449 abstract "Abstract Two approaches are traditionally used to build numerical models for facies distributions within a reservoir. Pixel-based techniques aim at generating simulated realizations that honor the well data values, and reproduce a given variogram which models two-point spatial correlation. However, because the variogram cannot look at spatial continuity between more than two locations at a time, pixel-based algorithms give poor representations of the actual facies geometries. In contrast, object-based techniques allow reproducing crisp geometries, but the conditioning on well data requires iterative trial-and-error corrections, which can be time-consuming, particularly when the data are dense with regard to the average object size. This paper presents a new approach that combines the easy conditioning of pixel-based algorithms with the ability to reproduce shapes of object-based techniques, without being too time and memory demanding. In this new approach, the complex geological structures expected to be present in the reservoir are characterized by multiple-point statistics, which express joint variability at many more than two locations at a time. Such multiple-point statistics cannot be inferred from typically sparse well data but could be read from training images depicting the expected subsurface heterogeneities. A training image need not carry any locally accurate information on the reservoir; it need only reflect a prior stationary geological/structural concept. Thus training images can be generated by object-based algorithms freed of the constraint of data conditioning. The multiple-point statistics inferred from the training image(s) are then exported to the reservoir model, where they are anchored to the well data using a pixel-based sequential simulation algorithm. This algorithm is tested for the simulation of a turbidite system where flow is controlled by meandering channels with cross-bedding. The training image reflecting the channel patterns is an unconditional realization generated by an object-based algorithm. The final simulated numerical models reproduce these channel patterns, and honor exactly all well data values at their locations. The methodology proposed appears to be practical, general, and fast." @default.
- W1970202449 created "2016-06-24" @default.
- W1970202449 creator A5016556317 @default.
- W1970202449 creator A5017925131 @default.
- W1970202449 date "2001-09-30" @default.
- W1970202449 modified "2023-10-15" @default.
- W1970202449 title "Reservoir Modeling Using Multiple-Point Statistics" @default.
- W1970202449 cites W118094499 @default.
- W1970202449 cites W119618301 @default.
- W1970202449 cites W15172382 @default.
- W1970202449 cites W1974932257 @default.
- W1970202449 cites W2005965987 @default.
- W1970202449 cites W2018537266 @default.
- W1970202449 cites W2023873688 @default.
- W1970202449 cites W2051781475 @default.
- W1970202449 cites W2052931217 @default.
- W1970202449 cites W2058853411 @default.
- W1970202449 cites W2111838861 @default.
- W1970202449 doi "https://doi.org/10.2118/71324-ms" @default.
- W1970202449 hasPublicationYear "2001" @default.
- W1970202449 type Work @default.
- W1970202449 sameAs 1970202449 @default.
- W1970202449 citedByCount "112" @default.
- W1970202449 countsByYear W19702024492012 @default.
- W1970202449 countsByYear W19702024492013 @default.
- W1970202449 countsByYear W19702024492014 @default.
- W1970202449 countsByYear W19702024492015 @default.
- W1970202449 countsByYear W19702024492016 @default.
- W1970202449 countsByYear W19702024492017 @default.
- W1970202449 countsByYear W19702024492018 @default.
- W1970202449 countsByYear W19702024492019 @default.
- W1970202449 countsByYear W19702024492020 @default.
- W1970202449 countsByYear W19702024492021 @default.
- W1970202449 countsByYear W19702024492022 @default.
- W1970202449 countsByYear W19702024492023 @default.
- W1970202449 crossrefType "proceedings-article" @default.
- W1970202449 hasAuthorship W1970202449A5016556317 @default.
- W1970202449 hasAuthorship W1970202449A5017925131 @default.
- W1970202449 hasConcept C105795698 @default.
- W1970202449 hasConcept C11413529 @default.
- W1970202449 hasConcept C115961682 @default.
- W1970202449 hasConcept C119857082 @default.
- W1970202449 hasConcept C124101348 @default.
- W1970202449 hasConcept C153180895 @default.
- W1970202449 hasConcept C154881674 @default.
- W1970202449 hasConcept C154945302 @default.
- W1970202449 hasConcept C160633673 @default.
- W1970202449 hasConcept C2524010 @default.
- W1970202449 hasConcept C2776036281 @default.
- W1970202449 hasConcept C2781238097 @default.
- W1970202449 hasConcept C28719098 @default.
- W1970202449 hasConcept C33923547 @default.
- W1970202449 hasConcept C41008148 @default.
- W1970202449 hasConcept C81692654 @default.
- W1970202449 hasConceptScore W1970202449C105795698 @default.
- W1970202449 hasConceptScore W1970202449C11413529 @default.
- W1970202449 hasConceptScore W1970202449C115961682 @default.
- W1970202449 hasConceptScore W1970202449C119857082 @default.
- W1970202449 hasConceptScore W1970202449C124101348 @default.
- W1970202449 hasConceptScore W1970202449C153180895 @default.
- W1970202449 hasConceptScore W1970202449C154881674 @default.
- W1970202449 hasConceptScore W1970202449C154945302 @default.
- W1970202449 hasConceptScore W1970202449C160633673 @default.
- W1970202449 hasConceptScore W1970202449C2524010 @default.
- W1970202449 hasConceptScore W1970202449C2776036281 @default.
- W1970202449 hasConceptScore W1970202449C2781238097 @default.
- W1970202449 hasConceptScore W1970202449C28719098 @default.
- W1970202449 hasConceptScore W1970202449C33923547 @default.
- W1970202449 hasConceptScore W1970202449C41008148 @default.
- W1970202449 hasConceptScore W1970202449C81692654 @default.
- W1970202449 hasLocation W19702024491 @default.
- W1970202449 hasOpenAccess W1970202449 @default.
- W1970202449 hasPrimaryLocation W19702024491 @default.
- W1970202449 hasRelatedWork W2031428567 @default.
- W1970202449 hasRelatedWork W2134633420 @default.
- W1970202449 hasRelatedWork W2374611508 @default.
- W1970202449 hasRelatedWork W2380007170 @default.
- W1970202449 hasRelatedWork W2380526267 @default.
- W1970202449 hasRelatedWork W3144075325 @default.
- W1970202449 hasRelatedWork W3192692000 @default.
- W1970202449 hasRelatedWork W4205739195 @default.
- W1970202449 hasRelatedWork W4255440089 @default.
- W1970202449 hasRelatedWork W4289096177 @default.
- W1970202449 isParatext "false" @default.
- W1970202449 isRetracted "false" @default.
- W1970202449 magId "1970202449" @default.
- W1970202449 workType "article" @default.