Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970204920> ?p ?o ?g. }
- W1970204920 endingPage "257" @default.
- W1970204920 startingPage "245" @default.
- W1970204920 abstract "A model for energy conversion in Complex I is proposed that is a conservative expansion of Mitchell's Q-cycle using a simple mechanistic variation of that already established experimentally for Complex III. The model accommodates the following proposals. (1) The large number of flavin and iron–sulfur redox cofactors integral to Complex I form a simple but long electron transfer chain guiding submillisecond electron transfer from substrate NADH in the matrix to the [4Fe–4S] cluster N2 close to the matrix–membrane interface. (2) The reduced N2 cluster injects a single electron into a ubiquinone (Q) drawn from the membrane pool into a nearby Qnz site, generating an unstable transition state semiquinone (SQ). The generation of a SQ species is the primary step in the energy conversion process in Complex I, as in Complex III. In Complex III, the SQ at the Qo site near the cytosolic side acts as a strong reductant to drive electronic charge across the membrane profile via two hemes B to a Qi site near the matrix side. We propose that in Complex I, the SQ at the Qnz site near the matrix side acts as a strong oxidant to pull electronic charge across the membrane profile via a quinone (Qny site) from a Qnx site near the cytosolic side. The opposing locations of matrix side Qnz and cytosolic side Qo, together with the opposite action of Qnz as an oxidant rather than a reductant, renders the Complex I and III processes vectorially and energetically complementary. The redox properties of the Qnz and Qo site occupants can be identical. (3) The intervening Qny site of Complex I acts as a proton pumping element (akin to the proton pump of Complex IV), rather than the simple electron guiding hemes B of Complex III. Thus the transmembrane action of Complex I doubles to four (or more) the number of protons and charges translocated per NADH oxidized and Q reduced. The Qny site does not exchange with the pool and may even be covalently bound. (4) The Qnx site on the cytosol side of Complex I is complementary to the Qi site on the matrix side of Complex III and can have the same redox properties. The Qnx site draws QH2 from the membrane pool to be oxidized in two single electron steps. Besides explaining earlier observations and making testable predictions, this Complex I model re-establishes a uniformity in the mechanisms of respiratory energy conversion by using engineering principles common to Complexes III and IV: (1) all the primary energy coupling reactions in the different complexes use oxygen chemistry in the guise of dioxygen or ubiquinone, (2) these reactions are highly localized structurally, utilizing closely placed catalytic redox cofactors, (3) these reactions are also highly localized energetically, since virtually all the free energy defined by substrates is conserved in the form of transition state that initiates the transmembrane action and (4) all complexes possess apparently supernumerary oxidation–reduction cofactors which form classical electron transfer chains that operate with high directional specificity to guide electron at near zero free energies to and from the sites of localized coupling." @default.
- W1970204920 created "2016-06-24" @default.
- W1970204920 creator A5028186491 @default.
- W1970204920 creator A5037831786 @default.
- W1970204920 creator A5054205502 @default.
- W1970204920 creator A5073449652 @default.
- W1970204920 creator A5079650101 @default.
- W1970204920 date "1998-05-01" @default.
- W1970204920 modified "2023-10-12" @default.
- W1970204920 title "A reductant-induced oxidation mechanism for Complex I" @default.
- W1970204920 cites W1026284996 @default.
- W1970204920 cites W11955890 @default.
- W1970204920 cites W1506019303 @default.
- W1970204920 cites W1550368474 @default.
- W1970204920 cites W1551647197 @default.
- W1970204920 cites W1570597278 @default.
- W1970204920 cites W1581458636 @default.
- W1970204920 cites W1589039153 @default.
- W1970204920 cites W163123111 @default.
- W1970204920 cites W182021034 @default.
- W1970204920 cites W1964126982 @default.
- W1970204920 cites W1967750933 @default.
- W1970204920 cites W1970548277 @default.
- W1970204920 cites W1976798586 @default.
- W1970204920 cites W1979599229 @default.
- W1970204920 cites W1982387375 @default.
- W1970204920 cites W1983925681 @default.
- W1970204920 cites W1983935922 @default.
- W1970204920 cites W1986003680 @default.
- W1970204920 cites W1991282478 @default.
- W1970204920 cites W2000387569 @default.
- W1970204920 cites W2001581545 @default.
- W1970204920 cites W2001784797 @default.
- W1970204920 cites W2001807494 @default.
- W1970204920 cites W2005829518 @default.
- W1970204920 cites W2010222856 @default.
- W1970204920 cites W2012003686 @default.
- W1970204920 cites W2014534570 @default.
- W1970204920 cites W2015935520 @default.
- W1970204920 cites W2020969870 @default.
- W1970204920 cites W2023719083 @default.
- W1970204920 cites W2026551489 @default.
- W1970204920 cites W2031996140 @default.
- W1970204920 cites W2036607640 @default.
- W1970204920 cites W2038062961 @default.
- W1970204920 cites W2041950514 @default.
- W1970204920 cites W2045116518 @default.
- W1970204920 cites W2049549363 @default.
- W1970204920 cites W2051267847 @default.
- W1970204920 cites W2052611313 @default.
- W1970204920 cites W2053342602 @default.
- W1970204920 cites W2054471568 @default.
- W1970204920 cites W2056106932 @default.
- W1970204920 cites W2056992712 @default.
- W1970204920 cites W2057566669 @default.
- W1970204920 cites W2063451918 @default.
- W1970204920 cites W2068276476 @default.
- W1970204920 cites W2074030782 @default.
- W1970204920 cites W2074362021 @default.
- W1970204920 cites W2076971346 @default.
- W1970204920 cites W2077996001 @default.
- W1970204920 cites W2085058795 @default.
- W1970204920 cites W2086158560 @default.
- W1970204920 cites W2087524379 @default.
- W1970204920 cites W2088767054 @default.
- W1970204920 cites W2092955506 @default.
- W1970204920 cites W2095216354 @default.
- W1970204920 cites W2107208446 @default.
- W1970204920 cites W2128171938 @default.
- W1970204920 cites W2133205270 @default.
- W1970204920 cites W2158230411 @default.
- W1970204920 cites W224730995 @default.
- W1970204920 cites W2316460841 @default.
- W1970204920 cites W234137654 @default.
- W1970204920 cites W2364977036 @default.
- W1970204920 cites W2413884886 @default.
- W1970204920 cites W4245994416 @default.
- W1970204920 cites W4249116504 @default.
- W1970204920 doi "https://doi.org/10.1016/s0005-2728(98)00031-0" @default.
- W1970204920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9593917" @default.
- W1970204920 hasPublicationYear "1998" @default.
- W1970204920 type Work @default.
- W1970204920 sameAs 1970204920 @default.
- W1970204920 citedByCount "139" @default.
- W1970204920 countsByYear W19702049202012 @default.
- W1970204920 countsByYear W19702049202013 @default.
- W1970204920 countsByYear W19702049202014 @default.
- W1970204920 countsByYear W19702049202016 @default.
- W1970204920 countsByYear W19702049202017 @default.
- W1970204920 countsByYear W19702049202018 @default.
- W1970204920 countsByYear W19702049202022 @default.
- W1970204920 crossrefType "journal-article" @default.
- W1970204920 hasAuthorship W1970204920A5028186491 @default.
- W1970204920 hasAuthorship W1970204920A5037831786 @default.
- W1970204920 hasAuthorship W1970204920A5054205502 @default.
- W1970204920 hasAuthorship W1970204920A5073449652 @default.
- W1970204920 hasAuthorship W1970204920A5079650101 @default.
- W1970204920 hasBestOaLocation W19702049201 @default.