Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970252670> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1970252670 endingPage "1062" @default.
- W1970252670 startingPage "1045" @default.
- W1970252670 abstract "A Random Mapping Space $(X, mathcal{J}, P)$ is a triplet, where $X$ is a finite set of elements $x$ of cardinality $n, mathcal{J}$ is a set of transformations $T$ of $X$ into $X$, and $P$ is a probability measure over $mathcal{J}$. In this paper, four choices of $mathcal{J}$ are considered (I) $mathcal{J}$ is the set of all transformations of $X$ into $X$. (II) $mathcal{J}$ is the set of all transformations of $X$ into $X$ such that for each $x varepsilon X Tx neq x$. (III) $mathcal{J}$ is the set of one-to-one mappings of $X$ onto $X$. (IV) $mathcal{J}$ is the set of one-to-one mappings of $X$ onto $X$, such that for each $x varepsilon X, Tx neq x$. In each case $P$ is taken as the uniform probability distribution over $mathcal{J}$. If $x varepsilon X$ and $T varepsilon mathcal{J}$, we will define $T^kx$ as the $k$th iteration of $T$ on $x$, where $k$ is an integer, i.e. $T^kx = T(T^{k-1}x)$, and $T^0x = x$ for all $x$. The reader should note that, in general, $T^kx, k < 0$, may not exist or may not be uniquely determined. If for some $k geqq 0, T^kx = y$, then $y$ is said to be a $k$th image of $x$ in $T$. The set of successors of $x$ in $T, S_T(x)$ is the set of all images of $x$ in $T$, i.e., $S_T(x) = {x, Tx, T^2x, cdots, T^{n-1}x},$ which need not be all distinct elements. If for some $k leqq 0, T^kx = y, y$ is said to be a $k$th inverse of $x$ in $T$. The set of all $k$th inverses of $x$ in $T$ is $T^{(k)} (x)$ and $P_T(x) = mathbf{bigcup}^0_{k=-n} T^{(k)} (x)$ is the set of predecessors of $x$ in $T$. If there exists an $m > 0$, such that $T^mx = x$, then $x$ is a cyclical element of $T$ and the set of elements $x, Tx, T^2x, cdots, T^{m-1}x$ is the cycle containing $x, C_T(x)$. If $m$ is the smallest positive integer for which $T^m x = x$, then $C_T(x)$ has cardinality $m$. We note further an interesting equivalence relation induced by $T$. If there exists a pair of integers $k_1, k_2$ such that $T^{k_1}x = T^{k_2}y,$ then $x sim y$ under $T$. It is readily seen that this is in fact an equivalence, and hence decomposes $X$ into equivalence classes, which we shall call the components of $X$ in $T$; and designate by $K_T(x)$ the component containing $x$. We define $s_T(x)$ to be the number of elements in $S_T(x), p_T(x)$ to be the number of elements in $P_T(x)$, and $l_T(x)$ to be the number of elements in the cycle contained in $K_T(x)$ (i.e. $l(x) =$ the number of elements in $C_T(x)$ if $x$ is cyclical). We designate by $q_T$ the number of elements of $X$ cyclical in $T$, and by $r_T$ the number of components of $X$ in $T$. Rubin and Sitgreaves [9] in a Stanford Technical Report have obtained the distributions of $s, p, l, q,$ and have given a generating function for the distribution of $r$ in case I. Folkert [3], in an unpublished doctoral dissertation has obtained the distribution of $r$ in cases I and II. The distribution of $r$ in case III is classical and may be found in Feller [2], Gontcharoff [4], and Riordan [8]. In the present paper, a number of these earlier results are rederived and extended. Specifically, for cases I and II, we compute the probability distributions of $s, p, l, q$ and $r$. In cases III and IV the distributions of $l$ and $r$ are given. In addition some asymptotic distributions and low order moments are obtained. For the convenience of the reader, an index of notations having a fixed meaning is provided in the appendix to the paper." @default.
- W1970252670 created "2016-06-24" @default.
- W1970252670 creator A5074997823 @default.
- W1970252670 date "1960-12-01" @default.
- W1970252670 modified "2023-09-29" @default.
- W1970252670 title "Probability Distributions Related to Random Mappings" @default.
- W1970252670 cites W2070658523 @default.
- W1970252670 cites W2128817474 @default.
- W1970252670 cites W2313722744 @default.
- W1970252670 cites W2751862591 @default.
- W1970252670 cites W2800778781 @default.
- W1970252670 cites W350596061 @default.
- W1970252670 doi "https://doi.org/10.1214/aoms/1177705677" @default.
- W1970252670 hasPublicationYear "1960" @default.
- W1970252670 type Work @default.
- W1970252670 sameAs 1970252670 @default.
- W1970252670 citedByCount "207" @default.
- W1970252670 countsByYear W19702526702012 @default.
- W1970252670 countsByYear W19702526702013 @default.
- W1970252670 countsByYear W19702526702014 @default.
- W1970252670 countsByYear W19702526702016 @default.
- W1970252670 countsByYear W19702526702017 @default.
- W1970252670 countsByYear W19702526702018 @default.
- W1970252670 countsByYear W19702526702019 @default.
- W1970252670 countsByYear W19702526702020 @default.
- W1970252670 countsByYear W19702526702021 @default.
- W1970252670 countsByYear W19702526702022 @default.
- W1970252670 countsByYear W19702526702023 @default.
- W1970252670 crossrefType "journal-article" @default.
- W1970252670 hasAuthorship W1970252670A5074997823 @default.
- W1970252670 hasBestOaLocation W19702526701 @default.
- W1970252670 hasConcept C114614502 @default.
- W1970252670 hasConcept C118615104 @default.
- W1970252670 hasConcept C124101348 @default.
- W1970252670 hasConcept C138885662 @default.
- W1970252670 hasConcept C199360897 @default.
- W1970252670 hasConcept C21031990 @default.
- W1970252670 hasConcept C2778572836 @default.
- W1970252670 hasConcept C33923547 @default.
- W1970252670 hasConcept C41008148 @default.
- W1970252670 hasConcept C41895202 @default.
- W1970252670 hasConcept C87117476 @default.
- W1970252670 hasConcept C97137487 @default.
- W1970252670 hasConceptScore W1970252670C114614502 @default.
- W1970252670 hasConceptScore W1970252670C118615104 @default.
- W1970252670 hasConceptScore W1970252670C124101348 @default.
- W1970252670 hasConceptScore W1970252670C138885662 @default.
- W1970252670 hasConceptScore W1970252670C199360897 @default.
- W1970252670 hasConceptScore W1970252670C21031990 @default.
- W1970252670 hasConceptScore W1970252670C2778572836 @default.
- W1970252670 hasConceptScore W1970252670C33923547 @default.
- W1970252670 hasConceptScore W1970252670C41008148 @default.
- W1970252670 hasConceptScore W1970252670C41895202 @default.
- W1970252670 hasConceptScore W1970252670C87117476 @default.
- W1970252670 hasConceptScore W1970252670C97137487 @default.
- W1970252670 hasIssue "4" @default.
- W1970252670 hasLocation W19702526701 @default.
- W1970252670 hasOpenAccess W1970252670 @default.
- W1970252670 hasPrimaryLocation W19702526701 @default.
- W1970252670 hasRelatedWork W2024680387 @default.
- W1970252670 hasRelatedWork W2044816189 @default.
- W1970252670 hasRelatedWork W2080188430 @default.
- W1970252670 hasRelatedWork W2151692582 @default.
- W1970252670 hasRelatedWork W2502624504 @default.
- W1970252670 hasRelatedWork W2739495308 @default.
- W1970252670 hasRelatedWork W2793745936 @default.
- W1970252670 hasRelatedWork W3098671307 @default.
- W1970252670 hasRelatedWork W3162701640 @default.
- W1970252670 hasRelatedWork W3173107589 @default.
- W1970252670 hasVolume "31" @default.
- W1970252670 isParatext "false" @default.
- W1970252670 isRetracted "false" @default.
- W1970252670 magId "1970252670" @default.
- W1970252670 workType "article" @default.