Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970306532> ?p ?o ?g. }
- W1970306532 endingPage "224" @default.
- W1970306532 startingPage "221" @default.
- W1970306532 abstract "X-ray diffraction, Raman and infrared spectroscopic evidence for the inclusion of water-rich ringwoodite in diamond from Juína, Brazil, indicates that, at least locally, the Earth’s transition zone is hydrous to about 1 weight per cent. It is not clear just how much water resides within the solid Earth, and where it is to be found, with many indirect measurements yielding conflicting results. Here Graham Pearson and co-authors present evidence from a diamond inclusion from Juína, Brazil, for the first known terrestrial occurrence of ringwoodite — a high-pressure polymorph of olivine first identified in meteorites and thought to be a major constituent of the Earth's mantle transition zone. The water-rich nature of this inclusion provides direct evidence that, at least locally, the transition zone is hydrous, to about 1 weight per cent. The ultimate origin of water in the Earth’s hydrosphere is in the deep Earth—the mantle. Theory1 and experiments2,3,4 have shown that although the water storage capacity of olivine-dominated shallow mantle is limited, the Earth’s transition zone, at depths between 410 and 660 kilometres, could be a major repository for water, owing to the ability of the higher-pressure polymorphs of olivine—wadsleyite and ringwoodite—to host enough water to comprise up to around 2.5 per cent of their weight. A hydrous transition zone may have a key role in terrestrial magmatism and plate tectonics5,6,7, yet despite experimental demonstration of the water-bearing capacity of these phases, geophysical probes such as electrical conductivity have provided conflicting results8,9,10, and the issue of whether the transition zone contains abundant water remains highly controversial11. Here we report X-ray diffraction, Raman and infrared spectroscopic data that provide, to our knowledge, the first evidence for the terrestrial occurrence of any higher-pressure polymorph of olivine: we find ringwoodite included in a diamond from Juína, Brazil. The water-rich nature of this inclusion, indicated by infrared absorption, along with the preservation of the ringwoodite, is direct evidence that, at least locally, the transition zone is hydrous, to about 1 weight per cent. The finding also indicates that some kimberlites must have their primary sources in this deep mantle region." @default.
- W1970306532 created "2016-06-24" @default.
- W1970306532 creator A5005797471 @default.
- W1970306532 creator A5007270733 @default.
- W1970306532 creator A5017290327 @default.
- W1970306532 creator A5023698297 @default.
- W1970306532 creator A5023935968 @default.
- W1970306532 creator A5052094214 @default.
- W1970306532 creator A5052884122 @default.
- W1970306532 creator A5053133716 @default.
- W1970306532 creator A5062383973 @default.
- W1970306532 creator A5070596446 @default.
- W1970306532 creator A5083913974 @default.
- W1970306532 creator A5085574832 @default.
- W1970306532 date "2014-03-01" @default.
- W1970306532 modified "2023-10-10" @default.
- W1970306532 title "Hydrous mantle transition zone indicated by ringwoodite included within diamond" @default.
- W1970306532 cites W130209920 @default.
- W1970306532 cites W1876742417 @default.
- W1970306532 cites W1970967823 @default.
- W1970306532 cites W1974244354 @default.
- W1970306532 cites W1979513085 @default.
- W1970306532 cites W1980231965 @default.
- W1970306532 cites W1986805661 @default.
- W1970306532 cites W1988151263 @default.
- W1970306532 cites W1994010532 @default.
- W1970306532 cites W1994397928 @default.
- W1970306532 cites W1995144089 @default.
- W1970306532 cites W2016431986 @default.
- W1970306532 cites W2017000331 @default.
- W1970306532 cites W2024310578 @default.
- W1970306532 cites W2025274981 @default.
- W1970306532 cites W2026370294 @default.
- W1970306532 cites W2031277259 @default.
- W1970306532 cites W2032326658 @default.
- W1970306532 cites W2033496518 @default.
- W1970306532 cites W2034457048 @default.
- W1970306532 cites W2036079389 @default.
- W1970306532 cites W2038090937 @default.
- W1970306532 cites W2044741566 @default.
- W1970306532 cites W2052549608 @default.
- W1970306532 cites W2053441820 @default.
- W1970306532 cites W2065392945 @default.
- W1970306532 cites W2077947643 @default.
- W1970306532 cites W2078990077 @default.
- W1970306532 cites W2079397768 @default.
- W1970306532 cites W2085962596 @default.
- W1970306532 cites W2087119683 @default.
- W1970306532 cites W2091855222 @default.
- W1970306532 cites W2118754446 @default.
- W1970306532 cites W2121974424 @default.
- W1970306532 cites W2129569966 @default.
- W1970306532 cites W2130640980 @default.
- W1970306532 cites W2132984412 @default.
- W1970306532 cites W2164986060 @default.
- W1970306532 cites W2317429944 @default.
- W1970306532 cites W2319027852 @default.
- W1970306532 cites W2899594633 @default.
- W1970306532 cites W4254906957 @default.
- W1970306532 doi "https://doi.org/10.1038/nature13080" @default.
- W1970306532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24622201" @default.
- W1970306532 hasPublicationYear "2014" @default.
- W1970306532 type Work @default.
- W1970306532 sameAs 1970306532 @default.
- W1970306532 citedByCount "575" @default.
- W1970306532 countsByYear W19703065322014 @default.
- W1970306532 countsByYear W19703065322015 @default.
- W1970306532 countsByYear W19703065322016 @default.
- W1970306532 countsByYear W19703065322017 @default.
- W1970306532 countsByYear W19703065322018 @default.
- W1970306532 countsByYear W19703065322019 @default.
- W1970306532 countsByYear W19703065322020 @default.
- W1970306532 countsByYear W19703065322021 @default.
- W1970306532 countsByYear W19703065322022 @default.
- W1970306532 countsByYear W19703065322023 @default.
- W1970306532 crossrefType "journal-article" @default.
- W1970306532 hasAuthorship W1970306532A5005797471 @default.
- W1970306532 hasAuthorship W1970306532A5007270733 @default.
- W1970306532 hasAuthorship W1970306532A5017290327 @default.
- W1970306532 hasAuthorship W1970306532A5023698297 @default.
- W1970306532 hasAuthorship W1970306532A5023935968 @default.
- W1970306532 hasAuthorship W1970306532A5052094214 @default.
- W1970306532 hasAuthorship W1970306532A5052884122 @default.
- W1970306532 hasAuthorship W1970306532A5053133716 @default.
- W1970306532 hasAuthorship W1970306532A5062383973 @default.
- W1970306532 hasAuthorship W1970306532A5070596446 @default.
- W1970306532 hasAuthorship W1970306532A5083913974 @default.
- W1970306532 hasAuthorship W1970306532A5085574832 @default.
- W1970306532 hasBestOaLocation W19703065322 @default.
- W1970306532 hasConcept C127313418 @default.
- W1970306532 hasConcept C163686574 @default.
- W1970306532 hasConcept C17409809 @default.
- W1970306532 hasConcept C183282558 @default.
- W1970306532 hasConcept C199289684 @default.
- W1970306532 hasConcept C2776567116 @default.
- W1970306532 hasConcept C2780364934 @default.
- W1970306532 hasConcept C67236022 @default.
- W1970306532 hasConceptScore W1970306532C127313418 @default.