Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970327404> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W1970327404 endingPage "563" @default.
- W1970327404 startingPage "547" @default.
- W1970327404 abstract "Knowledge discovery in data bases (KDD) for software engineering is a process for finding useful information in the large volumes of data that are a byproduct of software development, such as data bases for configuration management and for problem reporting. This paper presents guidelines for extracting innovative process metrics from these commonly available data bases. This paper also adapts the Classification And Regression Trees algorithm, CART, to the KDD process for software engineering data. To our knowledge, this algorithm has not been used previously for empirical software quality modeling. In particular, we present an innovative way to control the balance between misclassification rates. A KDD case study of a very large legacy telecommunications software system found that variables derived from source code, configuration management transactions, and problem reporting transactions can be useful predictors of software quality. The KDD process discovered that for this software development environment, out of forty software attributes, only a few of the predictor variables were significant. This resulted in a model that predicts whether modules are likely to have faults discovered by customers. Software developers need such predictions early in development to target software enhancement techniques to the modules that need improvement the most." @default.
- W1970327404 created "2016-06-24" @default.
- W1970327404 creator A5016035790 @default.
- W1970327404 creator A5063710658 @default.
- W1970327404 creator A5064995841 @default.
- W1970327404 creator A5089170562 @default.
- W1970327404 date "1999-10-01" @default.
- W1970327404 modified "2023-10-16" @default.
- W1970327404 title "DATA MINING FOR PREDICTORS OF SOFTWARE QUALITY" @default.
- W1970327404 cites W2008510077 @default.
- W1970327404 cites W2022103225 @default.
- W1970327404 cites W2029833477 @default.
- W1970327404 cites W2038965641 @default.
- W1970327404 cites W2040615655 @default.
- W1970327404 cites W2065655167 @default.
- W1970327404 cites W2075755635 @default.
- W1970327404 cites W2076294329 @default.
- W1970327404 cites W2087339977 @default.
- W1970327404 cites W2098168647 @default.
- W1970327404 cites W2110656807 @default.
- W1970327404 cites W2113199992 @default.
- W1970327404 cites W2121866145 @default.
- W1970327404 cites W2159942800 @default.
- W1970327404 cites W2161648633 @default.
- W1970327404 cites W4238049555 @default.
- W1970327404 doi "https://doi.org/10.1142/s0218194099000309" @default.
- W1970327404 hasPublicationYear "1999" @default.
- W1970327404 type Work @default.
- W1970327404 sameAs 1970327404 @default.
- W1970327404 citedByCount "46" @default.
- W1970327404 countsByYear W19703274042012 @default.
- W1970327404 countsByYear W19703274042013 @default.
- W1970327404 countsByYear W19703274042014 @default.
- W1970327404 countsByYear W19703274042016 @default.
- W1970327404 countsByYear W19703274042019 @default.
- W1970327404 countsByYear W19703274042020 @default.
- W1970327404 countsByYear W19703274042022 @default.
- W1970327404 crossrefType "journal-article" @default.
- W1970327404 hasAuthorship W1970327404A5016035790 @default.
- W1970327404 hasAuthorship W1970327404A5063710658 @default.
- W1970327404 hasAuthorship W1970327404A5064995841 @default.
- W1970327404 hasAuthorship W1970327404A5089170562 @default.
- W1970327404 hasConcept C103520596 @default.
- W1970327404 hasConcept C111919701 @default.
- W1970327404 hasConcept C115903868 @default.
- W1970327404 hasConcept C117447612 @default.
- W1970327404 hasConcept C120567893 @default.
- W1970327404 hasConcept C124101348 @default.
- W1970327404 hasConcept C180152950 @default.
- W1970327404 hasConcept C186846655 @default.
- W1970327404 hasConcept C201515116 @default.
- W1970327404 hasConcept C2777904410 @default.
- W1970327404 hasConcept C41008148 @default.
- W1970327404 hasConcept C529173508 @default.
- W1970327404 hasConcept C82214349 @default.
- W1970327404 hasConcept C98045186 @default.
- W1970327404 hasConceptScore W1970327404C103520596 @default.
- W1970327404 hasConceptScore W1970327404C111919701 @default.
- W1970327404 hasConceptScore W1970327404C115903868 @default.
- W1970327404 hasConceptScore W1970327404C117447612 @default.
- W1970327404 hasConceptScore W1970327404C120567893 @default.
- W1970327404 hasConceptScore W1970327404C124101348 @default.
- W1970327404 hasConceptScore W1970327404C180152950 @default.
- W1970327404 hasConceptScore W1970327404C186846655 @default.
- W1970327404 hasConceptScore W1970327404C201515116 @default.
- W1970327404 hasConceptScore W1970327404C2777904410 @default.
- W1970327404 hasConceptScore W1970327404C41008148 @default.
- W1970327404 hasConceptScore W1970327404C529173508 @default.
- W1970327404 hasConceptScore W1970327404C82214349 @default.
- W1970327404 hasConceptScore W1970327404C98045186 @default.
- W1970327404 hasIssue "05" @default.
- W1970327404 hasLocation W19703274041 @default.
- W1970327404 hasOpenAccess W1970327404 @default.
- W1970327404 hasPrimaryLocation W19703274041 @default.
- W1970327404 hasRelatedWork W1539900598 @default.
- W1970327404 hasRelatedWork W2012901726 @default.
- W1970327404 hasRelatedWork W2123254067 @default.
- W1970327404 hasRelatedWork W2396490822 @default.
- W1970327404 hasRelatedWork W2609860947 @default.
- W1970327404 hasRelatedWork W2769494974 @default.
- W1970327404 hasRelatedWork W2810283397 @default.
- W1970327404 hasRelatedWork W3123267766 @default.
- W1970327404 hasRelatedWork W41966346 @default.
- W1970327404 hasRelatedWork W94015702 @default.
- W1970327404 hasVolume "09" @default.
- W1970327404 isParatext "false" @default.
- W1970327404 isRetracted "false" @default.
- W1970327404 magId "1970327404" @default.
- W1970327404 workType "article" @default.