Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970402582> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W1970402582 endingPage "273" @default.
- W1970402582 startingPage "261" @default.
- W1970402582 abstract "In this paper we study the commutant of an analytic Toeplitz operator. For <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=phi upper H Superscript normal infinity> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mspace width=thickmathspace /> <mml:mspace width=thickmathspace /> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>phi ;;{H^infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=phi equals chi upper F> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>phi = chi F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be its inner-outer factorization. Our main result is that if there exists <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=lamda epsilon upper C> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mspace width=thickmathspace /> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mspace width=thickmathspace /> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>C</mml:mtext> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>lambda ;epsilon ;{text {C}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <italic>X</italic> factors as <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=chi equals chi 1 chi 2 midline-horizontal-ellipsis chi Subscript n> <mml:semantics> <mml:mrow> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>χ<!-- χ --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>χ<!-- χ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>χ<!-- χ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>chi = {chi _1}{chi _2} cdots {chi _n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, each <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=chi Subscript i> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>χ<!-- χ --></mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{chi _i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> an inner function, and if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F minus lamda> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>λ<!-- λ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>F - lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is divisible by each <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=chi Subscript i> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>χ<!-- χ --></mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{chi _i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-brace upper T Subscript phi Baseline right-brace prime equals left-brace upper T Subscript chi Baseline right-brace prime intersection left-brace upper T Subscript upper F Baseline right-brace prime> <mml:semantics> <mml:mrow> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>χ<!-- χ --></mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>F</mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{ {T_phi }} ’ = { {T_chi }} ’ cap { {T_F}} ’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The key step in the proof is Lemma 2, which is a curious result about nilpotent operators. One corollary of our main result is that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=chi left-parenthesis z right-parenthesis equals z Superscript n Baseline comma n greater-than-or-equal-to 1> <mml:semantics> <mml:mrow> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>chi (z) = {z^n},n geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-brace upper T Subscript phi Baseline right-brace prime equals left-brace upper T Subscript chi Baseline right-brace prime intersection left-brace upper T Subscript upper F Baseline right-brace prime> <mml:semantics> <mml:mrow> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>χ<!-- χ --></mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>F</mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{ {T_phi }} ’ = { {T_chi }} ’ cap { {T_F}} ’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, another is that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=phi epsilon upper H Superscript normal infinity> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mspace width=thickmathspace /> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>phi ;epsilon {H^infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is univalent then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-brace upper T Subscript phi Baseline right-brace prime equals left-brace upper T Subscript z Baseline right-brace prime> <mml:semantics> <mml:mrow> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>z</mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{ {T_phi }} ’ = { {T_z}} ’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We are also able to prove that if the inner factor of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=phi> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=application/x-tex>phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=chi left-parenthesis z right-parenthesis equals z Superscript n Baseline comma n greater-than-or-equal-to 1> <mml:semantics> <mml:mrow> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>chi (z) = {z^n},n geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-brace upper T Subscript phi Baseline right-brace prime equals left-brace upper T Subscript z Sub Superscript s Subscript Baseline right-brace prime> <mml:semantics> <mml:mrow> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:msup> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{ {T_phi }} ’ = { {T_{{z^s}}}} ’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <italic>s</italic> is a positive integer maximal with respect to the property that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=z Superscript n> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{z^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F left-parenthesis z right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F(z)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are both functions of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=z Superscript s> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{z^s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We conclude by raising six questions." @default.
- W1970402582 created "2016-06-24" @default.
- W1970402582 creator A5014406529 @default.
- W1970402582 creator A5022595321 @default.
- W1970402582 date "1973-01-01" @default.
- W1970402582 modified "2023-09-23" @default.
- W1970402582 title "The commutant of analytic Toeplitz operators" @default.
- W1970402582 cites W2014380178 @default.
- W1970402582 cites W2321222860 @default.
- W1970402582 cites W4236150601 @default.
- W1970402582 cites W4239202198 @default.
- W1970402582 cites W4247550431 @default.
- W1970402582 cites W4256115754 @default.
- W1970402582 doi "https://doi.org/10.1090/s0002-9947-1973-0324467-0" @default.
- W1970402582 hasPublicationYear "1973" @default.
- W1970402582 type Work @default.
- W1970402582 sameAs 1970402582 @default.
- W1970402582 citedByCount "58" @default.
- W1970402582 countsByYear W19704025822012 @default.
- W1970402582 countsByYear W19704025822013 @default.
- W1970402582 countsByYear W19704025822014 @default.
- W1970402582 countsByYear W19704025822015 @default.
- W1970402582 countsByYear W19704025822016 @default.
- W1970402582 countsByYear W19704025822017 @default.
- W1970402582 countsByYear W19704025822018 @default.
- W1970402582 countsByYear W19704025822019 @default.
- W1970402582 countsByYear W19704025822020 @default.
- W1970402582 countsByYear W19704025822021 @default.
- W1970402582 countsByYear W19704025822022 @default.
- W1970402582 countsByYear W19704025822023 @default.
- W1970402582 crossrefType "journal-article" @default.
- W1970402582 hasAuthorship W1970402582A5014406529 @default.
- W1970402582 hasAuthorship W1970402582A5022595321 @default.
- W1970402582 hasBestOaLocation W19704025821 @default.
- W1970402582 hasConcept C11413529 @default.
- W1970402582 hasConcept C154945302 @default.
- W1970402582 hasConcept C2776321320 @default.
- W1970402582 hasConcept C41008148 @default.
- W1970402582 hasConceptScore W1970402582C11413529 @default.
- W1970402582 hasConceptScore W1970402582C154945302 @default.
- W1970402582 hasConceptScore W1970402582C2776321320 @default.
- W1970402582 hasConceptScore W1970402582C41008148 @default.
- W1970402582 hasIssue "0" @default.
- W1970402582 hasLocation W19704025821 @default.
- W1970402582 hasOpenAccess W1970402582 @default.
- W1970402582 hasPrimaryLocation W19704025821 @default.
- W1970402582 hasRelatedWork W151193258 @default.
- W1970402582 hasRelatedWork W1529400504 @default.
- W1970402582 hasRelatedWork W1871911958 @default.
- W1970402582 hasRelatedWork W1892467659 @default.
- W1970402582 hasRelatedWork W2348710178 @default.
- W1970402582 hasRelatedWork W2808586768 @default.
- W1970402582 hasRelatedWork W2998403542 @default.
- W1970402582 hasRelatedWork W3201926073 @default.
- W1970402582 hasRelatedWork W38394648 @default.
- W1970402582 hasRelatedWork W73525116 @default.
- W1970402582 hasVolume "184" @default.
- W1970402582 isParatext "false" @default.
- W1970402582 isRetracted "false" @default.
- W1970402582 magId "1970402582" @default.
- W1970402582 workType "article" @default.