Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970450077> ?p ?o ?g. }
- W1970450077 endingPage "339" @default.
- W1970450077 startingPage "322" @default.
- W1970450077 abstract "Brain extraction is an important procedure in brain image analysis. Although numerous brain extraction methods have been presented, enhancing brain extraction methods remains challenging because brain MRI images exhibit complex characteristics, such as anatomical variability and intensity differences across different sequences and scanners. To address this problem, we present a Locally Linear Representation-based Classification (LLRC) method for brain extraction. A novel classification framework is derived by introducing the locally linear representation to the classical classification model. Under this classification framework, a common label fusion approach can be considered as a special case and thoroughly interpreted. Locality is important to calculate fusion weights for LLRC; this factor is also considered to determine that Local Anchor Embedding is more applicable in solving locally linear coefficients compared with other linear representation approaches. Moreover, LLRC supplies a way to learn the optimal classification scores of the training samples in the dictionary to obtain accurate classification. The International Consortium for Brain Mapping and the Alzheimer's Disease Neuroimaging Initiative databases were used to build a training dataset containing 70 scans. To evaluate the proposed method, we used four publicly available datasets (IBSR1, IBSR2, LPBA40, and ADNI3T, with a total of 241 scans). Experimental results demonstrate that the proposed method outperforms the four common brain extraction methods (BET, BSE, GCUT, and ROBEX), and is comparable to the performance of BEaST, while being more accurate on some datasets compared with BEaST." @default.
- W1970450077 created "2016-06-24" @default.
- W1970450077 creator A5011671643 @default.
- W1970450077 creator A5044127793 @default.
- W1970450077 creator A5057377195 @default.
- W1970450077 creator A5083537717 @default.
- W1970450077 creator A5084999538 @default.
- W1970450077 creator A5086110169 @default.
- W1970450077 creator A5089411715 @default.
- W1970450077 date "2014-05-01" @default.
- W1970450077 modified "2023-10-14" @default.
- W1970450077 title "Brain extraction based on locally linear representation-based classification" @default.
- W1970450077 cites W1972731016 @default.
- W1970450077 cites W1988366576 @default.
- W1970450077 cites W1989806566 @default.
- W1970450077 cites W1994157885 @default.
- W1970450077 cites W1995622889 @default.
- W1970450077 cites W2011658829 @default.
- W1970450077 cites W2019346246 @default.
- W1970450077 cites W2031083838 @default.
- W1970450077 cites W2053186076 @default.
- W1970450077 cites W2071881327 @default.
- W1970450077 cites W2091015108 @default.
- W1970450077 cites W2091073327 @default.
- W1970450077 cites W2092245015 @default.
- W1970450077 cites W2111128326 @default.
- W1970450077 cites W2118987707 @default.
- W1970450077 cites W2119848633 @default.
- W1970450077 cites W2123983635 @default.
- W1970450077 cites W2129812935 @default.
- W1970450077 cites W2131104747 @default.
- W1970450077 cites W2136396015 @default.
- W1970450077 cites W2138575170 @default.
- W1970450077 cites W2139140353 @default.
- W1970450077 cites W2139590689 @default.
- W1970450077 cites W2143895814 @default.
- W1970450077 cites W2145661921 @default.
- W1970450077 cites W2150265050 @default.
- W1970450077 cites W2151050383 @default.
- W1970450077 cites W2151721316 @default.
- W1970450077 cites W2154158661 @default.
- W1970450077 cites W2155513557 @default.
- W1970450077 cites W2157270343 @default.
- W1970450077 cites W2157848968 @default.
- W1970450077 doi "https://doi.org/10.1016/j.neuroimage.2014.01.059" @default.
- W1970450077 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24525169" @default.
- W1970450077 hasPublicationYear "2014" @default.
- W1970450077 type Work @default.
- W1970450077 sameAs 1970450077 @default.
- W1970450077 citedByCount "29" @default.
- W1970450077 countsByYear W19704500772015 @default.
- W1970450077 countsByYear W19704500772016 @default.
- W1970450077 countsByYear W19704500772017 @default.
- W1970450077 countsByYear W19704500772018 @default.
- W1970450077 countsByYear W19704500772019 @default.
- W1970450077 countsByYear W19704500772020 @default.
- W1970450077 countsByYear W19704500772021 @default.
- W1970450077 countsByYear W19704500772022 @default.
- W1970450077 countsByYear W19704500772023 @default.
- W1970450077 crossrefType "journal-article" @default.
- W1970450077 hasAuthorship W1970450077A5011671643 @default.
- W1970450077 hasAuthorship W1970450077A5044127793 @default.
- W1970450077 hasAuthorship W1970450077A5057377195 @default.
- W1970450077 hasAuthorship W1970450077A5083537717 @default.
- W1970450077 hasAuthorship W1970450077A5084999538 @default.
- W1970450077 hasAuthorship W1970450077A5086110169 @default.
- W1970450077 hasAuthorship W1970450077A5089411715 @default.
- W1970450077 hasConcept C118552586 @default.
- W1970450077 hasConcept C138885662 @default.
- W1970450077 hasConcept C153180895 @default.
- W1970450077 hasConcept C154945302 @default.
- W1970450077 hasConcept C17744445 @default.
- W1970450077 hasConcept C199539241 @default.
- W1970450077 hasConcept C2776359362 @default.
- W1970450077 hasConcept C2779808786 @default.
- W1970450077 hasConcept C41008148 @default.
- W1970450077 hasConcept C41895202 @default.
- W1970450077 hasConcept C58693492 @default.
- W1970450077 hasConcept C71924100 @default.
- W1970450077 hasConcept C94625758 @default.
- W1970450077 hasConceptScore W1970450077C118552586 @default.
- W1970450077 hasConceptScore W1970450077C138885662 @default.
- W1970450077 hasConceptScore W1970450077C153180895 @default.
- W1970450077 hasConceptScore W1970450077C154945302 @default.
- W1970450077 hasConceptScore W1970450077C17744445 @default.
- W1970450077 hasConceptScore W1970450077C199539241 @default.
- W1970450077 hasConceptScore W1970450077C2776359362 @default.
- W1970450077 hasConceptScore W1970450077C2779808786 @default.
- W1970450077 hasConceptScore W1970450077C41008148 @default.
- W1970450077 hasConceptScore W1970450077C41895202 @default.
- W1970450077 hasConceptScore W1970450077C58693492 @default.
- W1970450077 hasConceptScore W1970450077C71924100 @default.
- W1970450077 hasConceptScore W1970450077C94625758 @default.
- W1970450077 hasFunder F4320306219 @default.
- W1970450077 hasFunder F4320306305 @default.
- W1970450077 hasFunder F4320306493 @default.
- W1970450077 hasFunder F4320307132 @default.
- W1970450077 hasFunder F4320307765 @default.