Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970551674> ?p ?o ?g. }
- W1970551674 endingPage "85" @default.
- W1970551674 startingPage "76" @default.
- W1970551674 abstract "Abstract Ilmenite and zircon megacrysts, among other minerals representing the subcontinental lithospheric mantle, are exclusively delivered to the surface by kimberlite magmas. The intimate association of ilmenite and zircon with their transporting kimberlite melts still remains perplexing, as these minerals do not belong to the kimberlite liquidus assemblage at crustal pressures. The ilmenite and zircon megacrysts from the Monastery kimberlite (South Africa) represent a textbook example of the megacryst suite. The megacrysts show substantial chemical modification along contacts with the host kimberlite. Fine-grained “reaction” assemblages, comprising minerals rich in Zr (baddeleyite and sodium–zirconium silicates) and Ti (Ti–Fe oxides, perovskite, sphene, kassite), are present around zircon and ilmenite, respectively. At the zircon–ilmenite contact, chemical contributions from both minerals are recorded in Zr–Ti-rich phases such as calzirtite and zirkelite. The megacrysts contain crystallised melt pools and secondary melt inclusions in healed fractures; their mineral assemblage is dominated by alkali-bearing phases, including silicates (nepheline, kalsilite, sodalite, phlogopite–tetraferriphlogopite), titanates (priderite, freudenbergite), zirconium silicates (khibinskite, parakeldyshite), carbonates (zemkorite, eitelite), phosphates (apatite, bradleyite, nahpoite), sulfates (aphthitalite) and chlorides (halite, sylvite). These inclusions and melt pools are interpreted to be produced by reaction between the megacrysts and the transporting kimberlite melt, which infiltrated fractures in the megacrysts. Most secondary minerals at contacts with kimberlite require a supply of Ca, which is readily available in the carbonatite component of the kimberlite magma. The enrichment of the encapsulated mineral assemblages in alkali and volatile elements (Na, K, S, Cl) also appears to originate from the kimberlite melt. The similar U–Pb ages and identical Hf-isotope compositions of the megacryst assemblage (89.2 ± 2.8 Ma; eHf − 0.4 to + 1.3), the reaction assemblage (98 ± 7 Ma) and the host kimberlite (90 ± 4 Ma; eHf − 0.6 to + 1.7), imply their close genetic affinity. Although the megacrysts and kimberlite magma originated from the same source at the same time, the chemical disequilibrium recorded in the alteration of megacrysts precludes a simple “parental melt–cognate crystal” relationships. This apparent paradox can be resolved by considering the unmixing of a protokimberlite melt into silicate-oxide and carbonate liquids at mantle conditions." @default.
- W1970551674 created "2016-06-24" @default.
- W1970551674 creator A5039934733 @default.
- W1970551674 creator A5041008278 @default.
- W1970551674 creator A5044403879 @default.
- W1970551674 creator A5056410545 @default.
- W1970551674 creator A5056695911 @default.
- W1970551674 creator A5076158857 @default.
- W1970551674 date "2014-09-01" @default.
- W1970551674 modified "2023-09-23" @default.
- W1970551674 title "Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts" @default.
- W1970551674 cites W1643624415 @default.
- W1970551674 cites W1965681025 @default.
- W1970551674 cites W1969355006 @default.
- W1970551674 cites W1970000405 @default.
- W1970551674 cites W1978447260 @default.
- W1970551674 cites W1980588817 @default.
- W1970551674 cites W1984846057 @default.
- W1970551674 cites W1988488782 @default.
- W1970551674 cites W1999496681 @default.
- W1970551674 cites W1999621813 @default.
- W1970551674 cites W2012243673 @default.
- W1970551674 cites W2013593997 @default.
- W1970551674 cites W2014187062 @default.
- W1970551674 cites W2016923960 @default.
- W1970551674 cites W2019704143 @default.
- W1970551674 cites W2024801774 @default.
- W1970551674 cites W2028547212 @default.
- W1970551674 cites W2033866445 @default.
- W1970551674 cites W2034100384 @default.
- W1970551674 cites W2034538727 @default.
- W1970551674 cites W2035751343 @default.
- W1970551674 cites W2037811794 @default.
- W1970551674 cites W2042731771 @default.
- W1970551674 cites W2043755892 @default.
- W1970551674 cites W2044599228 @default.
- W1970551674 cites W2049306057 @default.
- W1970551674 cites W2050732472 @default.
- W1970551674 cites W2051273227 @default.
- W1970551674 cites W2052416404 @default.
- W1970551674 cites W2053651510 @default.
- W1970551674 cites W2054434638 @default.
- W1970551674 cites W2056077818 @default.
- W1970551674 cites W2057322342 @default.
- W1970551674 cites W2057337416 @default.
- W1970551674 cites W2065918365 @default.
- W1970551674 cites W2067162406 @default.
- W1970551674 cites W2069879942 @default.
- W1970551674 cites W2074530210 @default.
- W1970551674 cites W2075789958 @default.
- W1970551674 cites W2079087222 @default.
- W1970551674 cites W2085783169 @default.
- W1970551674 cites W2103527049 @default.
- W1970551674 cites W2110826685 @default.
- W1970551674 cites W2112595229 @default.
- W1970551674 cites W2120561922 @default.
- W1970551674 cites W2122197016 @default.
- W1970551674 cites W2124187529 @default.
- W1970551674 cites W2127984568 @default.
- W1970551674 cites W2128847471 @default.
- W1970551674 cites W2136852838 @default.
- W1970551674 cites W2140093647 @default.
- W1970551674 cites W2146433018 @default.
- W1970551674 cites W2148945411 @default.
- W1970551674 cites W2154699907 @default.
- W1970551674 cites W2161335649 @default.
- W1970551674 cites W2161939913 @default.
- W1970551674 cites W2169457256 @default.
- W1970551674 cites W2470068833 @default.
- W1970551674 cites W2507874860 @default.
- W1970551674 cites W2995482781 @default.
- W1970551674 doi "https://doi.org/10.1016/j.chemgeo.2014.06.008" @default.
- W1970551674 hasPublicationYear "2014" @default.
- W1970551674 type Work @default.
- W1970551674 sameAs 1970551674 @default.
- W1970551674 citedByCount "42" @default.
- W1970551674 countsByYear W19705516742014 @default.
- W1970551674 countsByYear W19705516742015 @default.
- W1970551674 countsByYear W19705516742016 @default.
- W1970551674 countsByYear W19705516742017 @default.
- W1970551674 countsByYear W19705516742018 @default.
- W1970551674 countsByYear W19705516742019 @default.
- W1970551674 countsByYear W19705516742020 @default.
- W1970551674 countsByYear W19705516742021 @default.
- W1970551674 countsByYear W19705516742022 @default.
- W1970551674 countsByYear W19705516742023 @default.
- W1970551674 crossrefType "journal-article" @default.
- W1970551674 hasAuthorship W1970551674A5039934733 @default.
- W1970551674 hasAuthorship W1970551674A5041008278 @default.
- W1970551674 hasAuthorship W1970551674A5044403879 @default.
- W1970551674 hasAuthorship W1970551674A5056410545 @default.
- W1970551674 hasAuthorship W1970551674A5056695911 @default.
- W1970551674 hasAuthorship W1970551674A5076158857 @default.
- W1970551674 hasConcept C127313418 @default.
- W1970551674 hasConcept C17409809 @default.
- W1970551674 hasConcept C183282558 @default.
- W1970551674 hasConcept C2778849375 @default.
- W1970551674 hasConcept C2780375929 @default.