Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970598762> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W1970598762 abstract "In our earlier paper it was proved that the singular locus of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A Subscript g> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>g</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>A_{g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (coarse moduli space of principally polarized abelian varieties over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper C> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>C</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) is expressed as the union of irreducible varieties <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A Subscript g Baseline left-parenthesis p comma alpha right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>g</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>A_{g}(p,alpha )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> representing abelian varieties with an order <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> automorphism of fixed entire representation. In this paper we prove that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A Subscript g Baseline left-parenthesis p comma alpha right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>g</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>A_{g}(p,alpha )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an irreducible component of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=Sing upper A Subscript g Baseline> <mml:semantics> <mml:mrow> <mml:mtext>Sing</mml:mtext> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>g</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>text {Sing} A_{g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if for a general element of this variety its automorphism group modulo <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-brace plus-or-minus 1 right-brace> <mml:semantics> <mml:mrow> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mn>1</mml:mn> <mml:mo fence=false stretchy=false>}</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{pm 1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G Subscript plus> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>+</mml:mo> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>G_{+}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, satisfies the equivalent conditions: <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G Subscript plus Baseline equals mathematical left-angle alpha mathematical right-angle> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>+</mml:mo> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo fence=false stretchy=false>⟨<!-- ⟨ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo fence=false stretchy=false>⟩<!-- ⟩ --></mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>G_{+}=langle alpha rangle</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N Subscript upper G Sub Subscript plus Baseline left-parenthesis mathematical left-angle alpha mathematical right-angle right-parenthesis equals mathematical left-angle alpha mathematical right-angle> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>+</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mo fence=false stretchy=false>⟨<!-- ⟨ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo fence=false stretchy=false>⟩<!-- ⟩ --></mml:mo> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo fence=false stretchy=false>⟨<!-- ⟨ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo fence=false stretchy=false>⟩<!-- ⟩ --></mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>N_{G_{+}}(langle alpha rangle )=langle alpha rangle</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We illustrate how these results can be used by studying the case <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g equals 4> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>g=4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p equals 5> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p=5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1970598762 created "2016-06-24" @default.
- W1970598762 creator A5020514410 @default.
- W1970598762 creator A5049712276 @default.
- W1970598762 creator A5075807082 @default.
- W1970598762 date "2011-06-16" @default.
- W1970598762 modified "2023-10-03" @default.
- W1970598762 title "On the irreducible components of the singular locus of 𝐴_{𝑔}. II" @default.
- W1970598762 cites W14682805 @default.
- W1970598762 cites W1985312095 @default.
- W1970598762 cites W2054331806 @default.
- W1970598762 cites W2351649221 @default.
- W1970598762 cites W4251007065 @default.
- W1970598762 cites W4252587007 @default.
- W1970598762 cites W4292101538 @default.
- W1970598762 cites W4293045476 @default.
- W1970598762 doi "https://doi.org/10.1090/s0002-9939-2011-10933-x" @default.
- W1970598762 hasPublicationYear "2011" @default.
- W1970598762 type Work @default.
- W1970598762 sameAs 1970598762 @default.
- W1970598762 citedByCount "1" @default.
- W1970598762 countsByYear W19705987622018 @default.
- W1970598762 crossrefType "journal-article" @default.
- W1970598762 hasAuthorship W1970598762A5020514410 @default.
- W1970598762 hasAuthorship W1970598762A5049712276 @default.
- W1970598762 hasAuthorship W1970598762A5075807082 @default.
- W1970598762 hasBestOaLocation W19705987621 @default.
- W1970598762 hasConcept C104317684 @default.
- W1970598762 hasConcept C33923547 @default.
- W1970598762 hasConcept C54355233 @default.
- W1970598762 hasConcept C84597430 @default.
- W1970598762 hasConcept C86803240 @default.
- W1970598762 hasConceptScore W1970598762C104317684 @default.
- W1970598762 hasConceptScore W1970598762C33923547 @default.
- W1970598762 hasConceptScore W1970598762C54355233 @default.
- W1970598762 hasConceptScore W1970598762C84597430 @default.
- W1970598762 hasConceptScore W1970598762C86803240 @default.
- W1970598762 hasLocation W19705987621 @default.
- W1970598762 hasOpenAccess W1970598762 @default.
- W1970598762 hasPrimaryLocation W19705987621 @default.
- W1970598762 hasRelatedWork W103862575 @default.
- W1970598762 hasRelatedWork W115546422 @default.
- W1970598762 hasRelatedWork W121576846 @default.
- W1970598762 hasRelatedWork W122930839 @default.
- W1970598762 hasRelatedWork W1592598817 @default.
- W1970598762 hasRelatedWork W1987545914 @default.
- W1970598762 hasRelatedWork W2012699368 @default.
- W1970598762 hasRelatedWork W2014034572 @default.
- W1970598762 hasRelatedWork W2048498166 @default.
- W1970598762 hasRelatedWork W205507285 @default.
- W1970598762 hasRelatedWork W206244518 @default.
- W1970598762 hasRelatedWork W2090210658 @default.
- W1970598762 hasRelatedWork W2284725072 @default.
- W1970598762 hasRelatedWork W24061029 @default.
- W1970598762 hasRelatedWork W2764402202 @default.
- W1970598762 hasRelatedWork W2764974073 @default.
- W1970598762 hasRelatedWork W2993694589 @default.
- W1970598762 hasRelatedWork W37068936 @default.
- W1970598762 hasRelatedWork W44342137 @default.
- W1970598762 hasRelatedWork W9309961 @default.
- W1970598762 isParatext "false" @default.
- W1970598762 isRetracted "false" @default.
- W1970598762 magId "1970598762" @default.
- W1970598762 workType "article" @default.