Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970694739> ?p ?o ?g. }
- W1970694739 endingPage "648" @default.
- W1970694739 startingPage "629" @default.
- W1970694739 abstract "Summary This paper is a philosophical exploration of adaptive pattern recognition paradigms for geophysical data inversion, aimed at overcoming many of the problems faced by current inversion methods. APR (adaptive pattern recognition) methods are based upon encoding exemplar patterns in such a way that their features can be used to classify subsequent test patterns. These paradigms are adaptive in that they learn from experience and are capable of inferring rules to deal with incomplete data. APR paradigms can also be highly effective in dealing with noise and other data distortions through the use of exemplars which characterize such distortions. Rather than merely seeking to reduce the point by point mismatch between data and model curves, effective APR paradigms would match patterns by establishing a feature vocabulary and inferring rules to weight the relative importance of these features in interpreting data. They have the advantage that prototype data sets can include analogue modelling data and field survey data rather than being restricted to models for which a numerical forward model can be calculated. The success of this approach to inversion will depend upon the effectiveness of replacing continuous parameter estimation with microclassification (discretized parameter estimation). Once the viability of APR schemes has been established for inverting data from individual geophysical methods, the task of joint interpretation of data from different geophysical survey methods could be accomplished in an optimum fashion by using hierarchical adaptive schemes. The application of APR to inversion is explored from the standpoint of neural net implementations. The foundations and properties of seven well-known neural net paradigms are examined in terms of several attributes necessary to build an effective inversion system. Different input space representation concepts for feature extraction and data compression are presented, including moment methods and a non-reversible, generalized Fourier transform method. Both parametric and non-parametric concepts for output space representation are explored as microclassification paradigms for quantitative estimation of Earth properties. The paper concludes that neural net paradigms have become sufficiently powerful to justify research programs aimed at implementing APR methods for geophysical inversion." @default.
- W1970694739 created "2016-06-24" @default.
- W1970694739 creator A5069997494 @default.
- W1970694739 date "1991-06-01" @default.
- W1970694739 modified "2023-10-16" @default.
- W1970694739 title "A pattern recognition approach to geophysical inversion using neural nets" @default.
- W1970694739 cites W1498436455 @default.
- W1970694739 cites W1983521209 @default.
- W1970694739 cites W1987356542 @default.
- W1970694739 cites W1996773027 @default.
- W1970694739 cites W1998866613 @default.
- W1970694739 cites W2010526455 @default.
- W1970694739 cites W2024060531 @default.
- W1970694739 cites W2040870580 @default.
- W1970694739 cites W2042492924 @default.
- W1970694739 cites W2055913343 @default.
- W1970694739 cites W2056003475 @default.
- W1970694739 cites W2076675608 @default.
- W1970694739 cites W2077961413 @default.
- W1970694739 cites W2081614114 @default.
- W1970694739 cites W2083918846 @default.
- W1970694739 cites W2096088428 @default.
- W1970694739 cites W2098500169 @default.
- W1970694739 cites W2101927907 @default.
- W1970694739 cites W2102806962 @default.
- W1970694739 cites W2106304233 @default.
- W1970694739 cites W2118376687 @default.
- W1970694739 cites W2125160349 @default.
- W1970694739 cites W2128084896 @default.
- W1970694739 cites W2132220437 @default.
- W1970694739 cites W2139997082 @default.
- W1970694739 cites W2160208155 @default.
- W1970694739 cites W2170747546 @default.
- W1970694739 cites W2256578114 @default.
- W1970694739 cites W2501014269 @default.
- W1970694739 cites W4233456301 @default.
- W1970694739 cites W4244017338 @default.
- W1970694739 cites W4244894666 @default.
- W1970694739 cites W4312410599 @default.
- W1970694739 doi "https://doi.org/10.1111/j.1365-246x.1991.tb00801.x" @default.
- W1970694739 hasPublicationYear "1991" @default.
- W1970694739 type Work @default.
- W1970694739 sameAs 1970694739 @default.
- W1970694739 citedByCount "84" @default.
- W1970694739 countsByYear W19706947392012 @default.
- W1970694739 countsByYear W19706947392013 @default.
- W1970694739 countsByYear W19706947392014 @default.
- W1970694739 countsByYear W19706947392015 @default.
- W1970694739 countsByYear W19706947392016 @default.
- W1970694739 countsByYear W19706947392017 @default.
- W1970694739 countsByYear W19706947392018 @default.
- W1970694739 countsByYear W19706947392019 @default.
- W1970694739 countsByYear W19706947392020 @default.
- W1970694739 countsByYear W19706947392021 @default.
- W1970694739 countsByYear W19706947392022 @default.
- W1970694739 countsByYear W19706947392023 @default.
- W1970694739 crossrefType "journal-article" @default.
- W1970694739 hasAuthorship W1970694739A5069997494 @default.
- W1970694739 hasBestOaLocation W19706947391 @default.
- W1970694739 hasConcept C109007969 @default.
- W1970694739 hasConcept C119857082 @default.
- W1970694739 hasConcept C124101348 @default.
- W1970694739 hasConcept C127313418 @default.
- W1970694739 hasConcept C134306372 @default.
- W1970694739 hasConcept C151730666 @default.
- W1970694739 hasConcept C154945302 @default.
- W1970694739 hasConcept C1893757 @default.
- W1970694739 hasConcept C33923547 @default.
- W1970694739 hasConcept C41008148 @default.
- W1970694739 hasConcept C50644808 @default.
- W1970694739 hasConcept C73000952 @default.
- W1970694739 hasConcept C8058405 @default.
- W1970694739 hasConceptScore W1970694739C109007969 @default.
- W1970694739 hasConceptScore W1970694739C119857082 @default.
- W1970694739 hasConceptScore W1970694739C124101348 @default.
- W1970694739 hasConceptScore W1970694739C127313418 @default.
- W1970694739 hasConceptScore W1970694739C134306372 @default.
- W1970694739 hasConceptScore W1970694739C151730666 @default.
- W1970694739 hasConceptScore W1970694739C154945302 @default.
- W1970694739 hasConceptScore W1970694739C1893757 @default.
- W1970694739 hasConceptScore W1970694739C33923547 @default.
- W1970694739 hasConceptScore W1970694739C41008148 @default.
- W1970694739 hasConceptScore W1970694739C50644808 @default.
- W1970694739 hasConceptScore W1970694739C73000952 @default.
- W1970694739 hasConceptScore W1970694739C8058405 @default.
- W1970694739 hasIssue "3" @default.
- W1970694739 hasLocation W19706947391 @default.
- W1970694739 hasOpenAccess W1970694739 @default.
- W1970694739 hasPrimaryLocation W19706947391 @default.
- W1970694739 hasRelatedWork W2961085424 @default.
- W1970694739 hasRelatedWork W3003265541 @default.
- W1970694739 hasRelatedWork W3005925217 @default.
- W1970694739 hasRelatedWork W4200059760 @default.
- W1970694739 hasRelatedWork W4285260836 @default.
- W1970694739 hasRelatedWork W4286629047 @default.
- W1970694739 hasRelatedWork W4287871663 @default.
- W1970694739 hasRelatedWork W4306321456 @default.
- W1970694739 hasRelatedWork W4306674287 @default.