Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970797673> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1970797673 abstract "Abstract Most gas condensate wells, including hydraulically fractured wells, are operated at pressures below the dew point pressure of the reservoir causing condensate to drop out and accumulate near the wellbore, thus blocking the gas production. Even for very lean gas condensate fluids, once the bottom hole flowing pressure falls below the dew point pressure, the condensate bank forms in a matter of months and leads to a rapid decline in production from these wells. In hydraulically fractured gas condensate wells, condensate can build up to very high saturations in and around the fracture which significantly reduces the productivity of these wells. Two-phase gas condensate flow measurements have been conducted under reservoir conditions in a propped fracture to study the damage caused by condensate blocking in fractures. An in situ chemical treatment has been developed to reduce the damage caused by liquid blocking of hydraulically fractured wells by altering the wettability of the proppants to neutral wet, thus reducing the residual liquid saturations and increasing gas relative permeability. A fluorinated surfactant in a glycol-alcohol solvent mixture was found to improve the gas and condensate relative permeabilities measured on propped fractures by a factor of about 2 under reservoir conditions. Introduction In gas condensate reservoirs, when the bottomhole pressure in flowing wells falls below the dew point pressure of the fluid, a liquid hydrocarbon phase commonly referred to as condensate is formed and is subsequently trapped by capillary forces. The liquid condensate, along with the connate water that is present, continues to accumulate in the rock pores thus impeding gas flow, until a critical liquid saturation is reached that is similar to the residual oil saturation that would form in the same rock under the same flow conditions. Once the critical liquid saturation is exceeded, both the condensate and gas flow towards the wellbore. The liquid continues to accumulate until a steady-state saturation is reached that is somewhat higher than the critical liquid saturation. Condensate banking can reduce the well productivity significantly, in several instances by a factor of 2 to 4. Afidick et al. (1994), Barnum et al. (1995), Engineer (1985) and Ayyalasomayajula et al. (2003) have reported field data that show significant productivity loss due to condensate accumulation. Since the reduction in well productivity is primarily associated with the reduction in gas relative permeability, a great deal of effort has gone into measuring and modeling the relative permeability of gas-condensate fluids. Initially, the studies were done at low pressure and temperature (Ham and Eilerts, 1967). Later studies were done at reservoir conditions with synthetic fluids (Kumar et al., 2006; Ayyalasomayajula et al., 2003; Henderson, 1998) as well as with reservoir fluids (Nagarajan et al., 1998). Various parameters such as interfacial tension (Haniff and Ali, 1990), high flow rates (Henderson et al., 2000; Kumar, 2006), non-Darcy effects (Henderson et al., 2000; Bang, 2007), fluid composition (Bang et al., 2006) and rock type (Bang et al., 2006) have been investigated. Several strategies have been tried and tested for stimulating gas-condensate wells with limited success (Anderson, 2005). Gas cycling (Aziz, 1983; Harouaka and Al-Hashim, 2002) allows the pressure to be maintained above the dew point but may not be economical, especially late in the life of the reservoir when large quantities of injected gas are required to maintain the pressure above dew point." @default.
- W1970797673 created "2016-06-24" @default.
- W1970797673 creator A5010450510 @default.
- W1970797673 creator A5022817383 @default.
- W1970797673 creator A5022905136 @default.
- W1970797673 creator A5023039641 @default.
- W1970797673 creator A5034079734 @default.
- W1970797673 creator A5040209725 @default.
- W1970797673 creator A5068148312 @default.
- W1970797673 date "2008-05-05" @default.
- W1970797673 modified "2023-09-26" @default.
- W1970797673 title "Improving Productivity of Hydraulically Fractured Gas Condensate Wells by Chemical Treatment" @default.
- W1970797673 doi "https://doi.org/10.4043/19599-ms" @default.
- W1970797673 hasPublicationYear "2008" @default.
- W1970797673 type Work @default.
- W1970797673 sameAs 1970797673 @default.
- W1970797673 citedByCount "35" @default.
- W1970797673 countsByYear W19707976732012 @default.
- W1970797673 countsByYear W19707976732014 @default.
- W1970797673 countsByYear W19707976732015 @default.
- W1970797673 countsByYear W19707976732016 @default.
- W1970797673 countsByYear W19707976732017 @default.
- W1970797673 countsByYear W19707976732018 @default.
- W1970797673 countsByYear W19707976732019 @default.
- W1970797673 countsByYear W19707976732020 @default.
- W1970797673 countsByYear W19707976732021 @default.
- W1970797673 crossrefType "proceedings-article" @default.
- W1970797673 hasAuthorship W1970797673A5010450510 @default.
- W1970797673 hasAuthorship W1970797673A5022817383 @default.
- W1970797673 hasAuthorship W1970797673A5022905136 @default.
- W1970797673 hasAuthorship W1970797673A5023039641 @default.
- W1970797673 hasAuthorship W1970797673A5034079734 @default.
- W1970797673 hasAuthorship W1970797673A5040209725 @default.
- W1970797673 hasAuthorship W1970797673A5068148312 @default.
- W1970797673 hasConcept C105569014 @default.
- W1970797673 hasConcept C113378726 @default.
- W1970797673 hasConcept C121332964 @default.
- W1970797673 hasConcept C127313418 @default.
- W1970797673 hasConcept C178790620 @default.
- W1970797673 hasConcept C183250156 @default.
- W1970797673 hasConcept C185592680 @default.
- W1970797673 hasConcept C187320778 @default.
- W1970797673 hasConcept C48797263 @default.
- W1970797673 hasConcept C548895740 @default.
- W1970797673 hasConcept C6648577 @default.
- W1970797673 hasConcept C78762247 @default.
- W1970797673 hasConcept C81803558 @default.
- W1970797673 hasConcept C82210777 @default.
- W1970797673 hasConcept C97355855 @default.
- W1970797673 hasConceptScore W1970797673C105569014 @default.
- W1970797673 hasConceptScore W1970797673C113378726 @default.
- W1970797673 hasConceptScore W1970797673C121332964 @default.
- W1970797673 hasConceptScore W1970797673C127313418 @default.
- W1970797673 hasConceptScore W1970797673C178790620 @default.
- W1970797673 hasConceptScore W1970797673C183250156 @default.
- W1970797673 hasConceptScore W1970797673C185592680 @default.
- W1970797673 hasConceptScore W1970797673C187320778 @default.
- W1970797673 hasConceptScore W1970797673C48797263 @default.
- W1970797673 hasConceptScore W1970797673C548895740 @default.
- W1970797673 hasConceptScore W1970797673C6648577 @default.
- W1970797673 hasConceptScore W1970797673C78762247 @default.
- W1970797673 hasConceptScore W1970797673C81803558 @default.
- W1970797673 hasConceptScore W1970797673C82210777 @default.
- W1970797673 hasConceptScore W1970797673C97355855 @default.
- W1970797673 hasLocation W19707976731 @default.
- W1970797673 hasOpenAccess W1970797673 @default.
- W1970797673 hasPrimaryLocation W19707976731 @default.
- W1970797673 hasRelatedWork W1989621946 @default.
- W1970797673 hasRelatedWork W2002155299 @default.
- W1970797673 hasRelatedWork W2012807557 @default.
- W1970797673 hasRelatedWork W2051938879 @default.
- W1970797673 hasRelatedWork W2076447505 @default.
- W1970797673 hasRelatedWork W2093102330 @default.
- W1970797673 hasRelatedWork W2145778691 @default.
- W1970797673 hasRelatedWork W4236843946 @default.
- W1970797673 hasRelatedWork W2033747256 @default.
- W1970797673 hasRelatedWork W2554349474 @default.
- W1970797673 isParatext "false" @default.
- W1970797673 isRetracted "false" @default.
- W1970797673 magId "1970797673" @default.
- W1970797673 workType "article" @default.