Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970889274> ?p ?o ?g. }
- W1970889274 endingPage "43" @default.
- W1970889274 startingPage "33" @default.
- W1970889274 abstract "Cancer cells have upregulated DNA repair mechanisms, enabling them survive DNA damage induced during repeated rapid cell divisions and targeted chemotherapeutic treatments. Cancer cell proliferation and survival targeting via inhibition of DNA repair pathways is currently a very promiscuous anti-tumor approach. The deubiquitinating enzyme, USP1 is known to promote DNA repair via complexing with UAF1. The USP1/UAF1 complex is responsible for regulating DNA break repair pathways such as trans-lesion synthesis pathway, Fanconi anemia pathway and homologous recombination. Thus, USP1/UAF1 inhibition poses as an efficient anti-cancer strategy. The recently made available high throughput screen data for anti USP1/UAF1 activity prompted us to compute bioactivity predictive models that could help in screening for potential USP1/UAF1 inhibitors having anti-cancer properties. The current study utilizes publicly available high throughput screen data set of chemical compounds evaluated for their potential USP1/UAF1 inhibitory effect. A machine learning approach was devised for generation of computational models that could predict for potential anti USP1/UAF1 biological activity of novel anticancer compounds. Additional efficacy of active compounds was screened by applying SMARTS filter to eliminate molecules with non-drug like features. The structural fragment analysis was further performed to explore structural properties of the molecules. We demonstrated that modern machine learning approaches could be efficiently employed in building predictive computational models and their predictive performance is statistically accurate. The structure fragment analysis revealed the structures that could play an important role in identification of USP1/UAF1 inhibitors." @default.
- W1970889274 created "2016-06-24" @default.
- W1970889274 creator A5017589215 @default.
- W1970889274 creator A5025999583 @default.
- W1970889274 creator A5039249322 @default.
- W1970889274 creator A5045643628 @default.
- W1970889274 creator A5053810407 @default.
- W1970889274 creator A5059993107 @default.
- W1970889274 creator A5073555270 @default.
- W1970889274 date "2015-01-30" @default.
- W1970889274 modified "2023-09-28" @default.
- W1970889274 title "Cheminformatics models based on machine learning approaches for design of USP1/UAF1 abrogators as anticancer agents" @default.
- W1970889274 cites W1794195058 @default.
- W1970889274 cites W1817561967 @default.
- W1970889274 cites W1840855988 @default.
- W1970889274 cites W1965514991 @default.
- W1970889274 cites W1967402966 @default.
- W1970889274 cites W1969770800 @default.
- W1970889274 cites W1974242110 @default.
- W1970889274 cites W1975448236 @default.
- W1970889274 cites W1976385056 @default.
- W1970889274 cites W1976666288 @default.
- W1970889274 cites W1980578402 @default.
- W1970889274 cites W1987871280 @default.
- W1970889274 cites W1990556747 @default.
- W1970889274 cites W1994306321 @default.
- W1970889274 cites W2000017794 @default.
- W1970889274 cites W2003058744 @default.
- W1970889274 cites W2006548753 @default.
- W1970889274 cites W2008207745 @default.
- W1970889274 cites W2012823815 @default.
- W1970889274 cites W2015426430 @default.
- W1970889274 cites W2020031294 @default.
- W1970889274 cites W2020973204 @default.
- W1970889274 cites W2022787288 @default.
- W1970889274 cites W2033055043 @default.
- W1970889274 cites W2034087450 @default.
- W1970889274 cites W2036826205 @default.
- W1970889274 cites W2038432313 @default.
- W1970889274 cites W2041774091 @default.
- W1970889274 cites W2043509228 @default.
- W1970889274 cites W2046881237 @default.
- W1970889274 cites W2077494922 @default.
- W1970889274 cites W2083960841 @default.
- W1970889274 cites W2084904189 @default.
- W1970889274 cites W2085587362 @default.
- W1970889274 cites W2088724822 @default.
- W1970889274 cites W2088767253 @default.
- W1970889274 cites W2093814864 @default.
- W1970889274 cites W2095100590 @default.
- W1970889274 cites W2096560421 @default.
- W1970889274 cites W2109826612 @default.
- W1970889274 cites W2121776789 @default.
- W1970889274 cites W2124507445 @default.
- W1970889274 cites W2125335678 @default.
- W1970889274 cites W2125732268 @default.
- W1970889274 cites W2134071049 @default.
- W1970889274 cites W2134558237 @default.
- W1970889274 cites W2149812033 @default.
- W1970889274 cites W2150925238 @default.
- W1970889274 cites W2163646378 @default.
- W1970889274 cites W2199634952 @default.
- W1970889274 cites W2281048538 @default.
- W1970889274 cites W2911964244 @default.
- W1970889274 cites W84368778 @default.
- W1970889274 doi "https://doi.org/10.1007/s11693-015-9162-1" @default.
- W1970889274 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4427583" @default.
- W1970889274 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25972987" @default.
- W1970889274 hasPublicationYear "2015" @default.
- W1970889274 type Work @default.
- W1970889274 sameAs 1970889274 @default.
- W1970889274 citedByCount "11" @default.
- W1970889274 countsByYear W19708892742016 @default.
- W1970889274 countsByYear W19708892742018 @default.
- W1970889274 countsByYear W19708892742019 @default.
- W1970889274 countsByYear W19708892742021 @default.
- W1970889274 countsByYear W19708892742022 @default.
- W1970889274 crossrefType "journal-article" @default.
- W1970889274 hasAuthorship W1970889274A5017589215 @default.
- W1970889274 hasAuthorship W1970889274A5025999583 @default.
- W1970889274 hasAuthorship W1970889274A5039249322 @default.
- W1970889274 hasAuthorship W1970889274A5045643628 @default.
- W1970889274 hasAuthorship W1970889274A5053810407 @default.
- W1970889274 hasAuthorship W1970889274A5059993107 @default.
- W1970889274 hasAuthorship W1970889274A5073555270 @default.
- W1970889274 hasBestOaLocation W19708892742 @default.
- W1970889274 hasConcept C121608353 @default.
- W1970889274 hasConcept C134935766 @default.
- W1970889274 hasConcept C143425029 @default.
- W1970889274 hasConcept C185592680 @default.
- W1970889274 hasConcept C2778124228 @default.
- W1970889274 hasConcept C2778502085 @default.
- W1970889274 hasConcept C2909513124 @default.
- W1970889274 hasConcept C41008148 @default.
- W1970889274 hasConcept C502942594 @default.
- W1970889274 hasConcept C54355233 @default.
- W1970889274 hasConcept C552990157 @default.
- W1970889274 hasConcept C55493867 @default.