Matches in SemOpenAlex for { <https://semopenalex.org/work/W1970915800> ?p ?o ?g. }
- W1970915800 endingPage "409" @default.
- W1970915800 startingPage "397" @default.
- W1970915800 abstract "A model was developed to describe how the 2:1 layer excess negative charge induced by the reduction of Fe(III) to Fe(II) by sodium dithionite buffered with citrate–bicarbonate is balanced and applied to nontronites. This model is based on new experimental data and extends structural interpretation introduced by a former model [36], [37], [38]. The 2:1 layer negative charge increase due to Fe(III) to Fe(II) reduction is balanced by an excess adsorption of cations in the clay interlayers and a specific sorption of H+ from solution. Prevalence of one compensating mechanism over the other is related to the growing lattice distortion induced by structural Fe(III) reduction. At low reduction levels, cation adsorption dominates and some of the incorporated protons react with structural OH groups, leading to a dehydroxylation of the structure. Starting from a moderate reduction level, other structural changes occur, leading to a reorganisation of the octahedral and tetrahedral lattice: migration or release of cations, intense dehydroxylation and bonding of protons to undersaturated oxygen atoms. Experimental data highlight some particular properties of ferruginous smectites regarding chemical reduction. Contrary to previous assumptions, the negative layer charge of nontronites does not only increase towards a plateau value upon reduction. A peak is observed in the reduction domain. After this peak, the negative layer charge decreases upon extended reduction (>30%). The decrease is so dramatic that the layer charge of highly reduced nontronites can fall below that of its fully oxidised counterpart. Furthermore, the presence of a large amount of tetrahedral Fe seems to promote intense clay structural changes and Fe reducibility. Our newly acquired data clearly show that models currently available in the literature cannot be applied to the whole reduction range of clay structural Fe. Moreover, changes in the model normalising procedure clearly demonstrate that the investigated low tetrahedral bearing nontronites (SWa-1, GAN and NAu-1) all exhibit the same behaviour at low reduction levels. Consequently, we restricted our model to the case of moderate reduction (<30%) in low tetrahedral Fe-bearing nontronites. Our adapted model provides the relative amounts of Na+ (p) and H+ (ni) cations incorporated in the structure as a function of the amount of Fe reduction. Two equations enable the investigated systems to be described: p = m/(1 + Kr⋅ω⋅mrel) and ni = Kr⋅ω⋅m⋅mrel/(1 + Kr⋅ω⋅mrel); where m is the Fe(II) content, mrel, the reduction level (m/mtot), ω, the cation exchange capacity (CEC, and Kr, an empirical constant specific to the system." @default.
- W1970915800 created "2016-06-24" @default.
- W1970915800 creator A5014686360 @default.
- W1970915800 creator A5063206184 @default.
- W1970915800 creator A5066060980 @default.
- W1970915800 creator A5085325499 @default.
- W1970915800 creator A5090519205 @default.
- W1970915800 date "2013-10-01" @default.
- W1970915800 modified "2023-10-17" @default.
- W1970915800 title "Modelling CEC variations versus structural iron reduction levels in dioctahedral smectites. Existing approaches, new data and model refinements" @default.
- W1970915800 cites W1969806102 @default.
- W1970915800 cites W1970628071 @default.
- W1970915800 cites W1974524134 @default.
- W1970915800 cites W1979879399 @default.
- W1970915800 cites W1987017467 @default.
- W1970915800 cites W1988022888 @default.
- W1970915800 cites W1989666269 @default.
- W1970915800 cites W1991146710 @default.
- W1970915800 cites W1992606584 @default.
- W1970915800 cites W1995897201 @default.
- W1970915800 cites W1996982370 @default.
- W1970915800 cites W1999284894 @default.
- W1970915800 cites W2000060983 @default.
- W1970915800 cites W2000398883 @default.
- W1970915800 cites W2007877613 @default.
- W1970915800 cites W2009144164 @default.
- W1970915800 cites W2010858086 @default.
- W1970915800 cites W2024009794 @default.
- W1970915800 cites W2031137103 @default.
- W1970915800 cites W2032064281 @default.
- W1970915800 cites W2035758570 @default.
- W1970915800 cites W2038362686 @default.
- W1970915800 cites W2039767278 @default.
- W1970915800 cites W2040793060 @default.
- W1970915800 cites W2046721971 @default.
- W1970915800 cites W2048386523 @default.
- W1970915800 cites W2051765404 @default.
- W1970915800 cites W2052944991 @default.
- W1970915800 cites W2053911010 @default.
- W1970915800 cites W2056027157 @default.
- W1970915800 cites W2066476651 @default.
- W1970915800 cites W2069447629 @default.
- W1970915800 cites W2075925135 @default.
- W1970915800 cites W2079950833 @default.
- W1970915800 cites W2095942008 @default.
- W1970915800 cites W2098963004 @default.
- W1970915800 cites W2099903411 @default.
- W1970915800 cites W2100838242 @default.
- W1970915800 cites W2102355276 @default.
- W1970915800 cites W2102569073 @default.
- W1970915800 cites W2110211650 @default.
- W1970915800 cites W2111180170 @default.
- W1970915800 cites W2122388543 @default.
- W1970915800 cites W2122815164 @default.
- W1970915800 cites W2127487837 @default.
- W1970915800 cites W2133573325 @default.
- W1970915800 cites W2133810330 @default.
- W1970915800 cites W2144950249 @default.
- W1970915800 cites W2145783697 @default.
- W1970915800 cites W2149096931 @default.
- W1970915800 cites W2154118184 @default.
- W1970915800 cites W2156383362 @default.
- W1970915800 cites W2156793406 @default.
- W1970915800 cites W2166300301 @default.
- W1970915800 cites W2168823400 @default.
- W1970915800 cites W2169926457 @default.
- W1970915800 cites W2313579573 @default.
- W1970915800 cites W2313685488 @default.
- W1970915800 cites W2335812924 @default.
- W1970915800 cites W2406928906 @default.
- W1970915800 doi "https://doi.org/10.1016/j.jcis.2013.05.014" @default.
- W1970915800 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23810545" @default.
- W1970915800 hasPublicationYear "2013" @default.
- W1970915800 type Work @default.
- W1970915800 sameAs 1970915800 @default.
- W1970915800 citedByCount "20" @default.
- W1970915800 countsByYear W19709158002014 @default.
- W1970915800 countsByYear W19709158002015 @default.
- W1970915800 countsByYear W19709158002016 @default.
- W1970915800 countsByYear W19709158002017 @default.
- W1970915800 countsByYear W19709158002018 @default.
- W1970915800 countsByYear W19709158002019 @default.
- W1970915800 countsByYear W19709158002020 @default.
- W1970915800 countsByYear W19709158002021 @default.
- W1970915800 countsByYear W19709158002022 @default.
- W1970915800 countsByYear W19709158002023 @default.
- W1970915800 crossrefType "journal-article" @default.
- W1970915800 hasAuthorship W1970915800A5014686360 @default.
- W1970915800 hasAuthorship W1970915800A5063206184 @default.
- W1970915800 hasAuthorship W1970915800A5066060980 @default.
- W1970915800 hasAuthorship W1970915800A5085325499 @default.
- W1970915800 hasAuthorship W1970915800A5090519205 @default.
- W1970915800 hasConcept C115624301 @default.
- W1970915800 hasConcept C147789679 @default.
- W1970915800 hasConcept C150394285 @default.
- W1970915800 hasConcept C168900304 @default.
- W1970915800 hasConcept C178790620 @default.
- W1970915800 hasConcept C179104552 @default.