Matches in SemOpenAlex for { <https://semopenalex.org/work/W1971016082> ?p ?o ?g. }
- W1971016082 abstract "X-ray methods based on synchrotron technology have the promise of providing time-resolved structural data based on the high flux and brightness of the X-ray beams. One of the most closely examined problems in this area of time-resolved structure determination has been the examination of intermediates in ligand binding to myoglobin. Recent crystallographic experiments using synchrotron radiation have identified the protein tertiary and heme structural changes that occur upon photolysis of the myoglobin--carbon monoxide complex at cryogenic temperatures [Schlichting, I., Berendzen, J., Phillips, G., & Sweet, R. (1994) Nature 371, 808--812]. However, the precision of protein crystallographic data (approximately 0.2 A) is insufficient to provide precise metrical details of the iron--ligand bond lengths. Since bond length changes on this scale can trigger reactivity changes of several orders of magnitude, such detail is critical to a full understanding of metalloprotein structure--function relationships. Extended X-ray absorption fine structure (EXAFS) spectroscopy has the potential for analyzing bond distances to a precision of 0.02 A but is hampered by its relative insensitivity to the geometry of the backscattering atoms. Thus, it is often unable to provide a unique solution to the structure without ancillary structural information. We have developed a suite of computer programs that incorporate this ancillary structural information and compute the expected experimental spectra for a wide ranging series of Cartesian coordinate sets (global mapping). The programs systematically increment the distance of the metal to various coordinating ligands (along with their associated higher shells). Then, utilizing the ab initio EXAFS code FEFF 6.01, simulated spectra are generated and compared to the actual experimental spectra, and the differences are computed. Finally, the results for hundreds of simulations can be displayed (and compared) in a single plot. The power of this approach is demonstrated in the examination of high signal to noise EXAFS data from a photolyzed solution sample of the myoglobin--carbon monoxide complex at 10 K. Evaluation of these data using our global mapping procedures placed the iron to pyrrole nitrogen average distances close to the value for deoxymyoglobin (2.05 +/- 0.01 A), while the distance from iron to the proximal histidine nitrogen is seen to be 2.20 +/- 0.04 A. It is also shown that one cannot uniquely position the CO ligand on the basis of the EXAFS data alone, as a number of reasonable minima (from the perspective of the EXAFS) are observed. This provides a reasonable explanation for the multiplicity of solutions that have been previously reported. The results presented here are seen to be in complete agreement with the crystallographic results of Schlichting et al. (1994) within the respective errors of the two techniques; however, the extended X-ray absorption fine structure data allow the iron--ligand bond lengths to be precisely defined. An examination of the available spectroscopic data, including EXAFS, shows that the crystallographic results of Schlichting et al. (1994) are highly relevant to the physiological solution state and must be taken into account in any attempt to understand the incomplete relaxation process of the heme iron for the Mb*CO photoproduct at low temperature." @default.
- W1971016082 created "2016-06-24" @default.
- W1971016082 creator A5010781560 @default.
- W1971016082 creator A5019466584 @default.
- W1971016082 creator A5034420107 @default.
- W1971016082 creator A5045705475 @default.
- W1971016082 creator A5054360380 @default.
- W1971016082 creator A5071940002 @default.
- W1971016082 creator A5072716963 @default.
- W1971016082 creator A5074590540 @default.
- W1971016082 date "1996-01-01" @default.
- W1971016082 modified "2023-10-18" @default.
- W1971016082 title "Global Mapping of Structural Solutions Provided by the Extended X-ray Absorption Fine Structure ab Initio Code FEFF 6.01: Structure of the Cryogenic Photoproduct of the Myoglobin−Carbon Monoxide Complex" @default.
- W1971016082 cites W1566053729 @default.
- W1971016082 cites W1603656521 @default.
- W1971016082 cites W1971691446 @default.
- W1971016082 cites W1977664340 @default.
- W1971016082 cites W1978325670 @default.
- W1971016082 cites W1982295085 @default.
- W1971016082 cites W1982481624 @default.
- W1971016082 cites W1990316752 @default.
- W1971016082 cites W1990486722 @default.
- W1971016082 cites W1991693430 @default.
- W1971016082 cites W1993804553 @default.
- W1971016082 cites W1997997381 @default.
- W1971016082 cites W2000212161 @default.
- W1971016082 cites W2000820246 @default.
- W1971016082 cites W2005031579 @default.
- W1971016082 cites W2007198191 @default.
- W1971016082 cites W2007702988 @default.
- W1971016082 cites W2009467195 @default.
- W1971016082 cites W2009553111 @default.
- W1971016082 cites W2011289735 @default.
- W1971016082 cites W2016050070 @default.
- W1971016082 cites W2017644006 @default.
- W1971016082 cites W2020688160 @default.
- W1971016082 cites W2020867396 @default.
- W1971016082 cites W2021523699 @default.
- W1971016082 cites W2026247264 @default.
- W1971016082 cites W2030568700 @default.
- W1971016082 cites W2036136843 @default.
- W1971016082 cites W2038508868 @default.
- W1971016082 cites W2038754535 @default.
- W1971016082 cites W2039963111 @default.
- W1971016082 cites W2040355223 @default.
- W1971016082 cites W2042726448 @default.
- W1971016082 cites W2045562184 @default.
- W1971016082 cites W2047636928 @default.
- W1971016082 cites W2063896140 @default.
- W1971016082 cites W2068401177 @default.
- W1971016082 cites W2068505529 @default.
- W1971016082 cites W2070820417 @default.
- W1971016082 cites W2070902640 @default.
- W1971016082 cites W2073047726 @default.
- W1971016082 cites W2077409318 @default.
- W1971016082 cites W2080478920 @default.
- W1971016082 cites W2083960792 @default.
- W1971016082 cites W2085475154 @default.
- W1971016082 cites W2087075174 @default.
- W1971016082 cites W2088512861 @default.
- W1971016082 cites W2089772015 @default.
- W1971016082 cites W2090596525 @default.
- W1971016082 cites W2096700300 @default.
- W1971016082 cites W2102416893 @default.
- W1971016082 cites W2121068877 @default.
- W1971016082 cites W2124622153 @default.
- W1971016082 cites W2148289289 @default.
- W1971016082 cites W2175985062 @default.
- W1971016082 cites W2274381707 @default.
- W1971016082 cites W2338751174 @default.
- W1971016082 cites W2460893810 @default.
- W1971016082 cites W4237850793 @default.
- W1971016082 doi "https://doi.org/10.1021/bi9605503" @default.
- W1971016082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8703904" @default.
- W1971016082 hasPublicationYear "1996" @default.
- W1971016082 type Work @default.
- W1971016082 sameAs 1971016082 @default.
- W1971016082 citedByCount "27" @default.
- W1971016082 countsByYear W19710160822013 @default.
- W1971016082 countsByYear W19710160822014 @default.
- W1971016082 countsByYear W19710160822020 @default.
- W1971016082 crossrefType "journal-article" @default.
- W1971016082 hasAuthorship W1971016082A5010781560 @default.
- W1971016082 hasAuthorship W1971016082A5019466584 @default.
- W1971016082 hasAuthorship W1971016082A5034420107 @default.
- W1971016082 hasAuthorship W1971016082A5045705475 @default.
- W1971016082 hasAuthorship W1971016082A5054360380 @default.
- W1971016082 hasAuthorship W1971016082A5071940002 @default.
- W1971016082 hasAuthorship W1971016082A5072716963 @default.
- W1971016082 hasAuthorship W1971016082A5074590540 @default.
- W1971016082 hasConcept C107861141 @default.
- W1971016082 hasConcept C115624301 @default.
- W1971016082 hasConcept C119824511 @default.
- W1971016082 hasConcept C120665830 @default.
- W1971016082 hasConcept C121332964 @default.
- W1971016082 hasConcept C125287762 @default.
- W1971016082 hasConcept C155860418 @default.
- W1971016082 hasConcept C159985019 @default.
- W1971016082 hasConcept C16332341 @default.
- W1971016082 hasConcept C178790620 @default.