Matches in SemOpenAlex for { <https://semopenalex.org/work/W1971290315> ?p ?o ?g. }
- W1971290315 abstract "Nonlinear power-type failure envelopes of the form τ=(a+bσ)n were examined in this paper. It is shown that equations for which 0<n<1/2 are legitimate failure envelopes provided that a is greater than some function of b, contrary to earlier assertions. The principal stress σ1-σ3 relations corresponding to these laws have been derived explicitly for the quadratic law (n=1/2) and implicitly for n=1/3,2/3,and 3/4. For other n values, a numerical algorithm for deducing the principal stress relations has been given. The procedure for evaluating the parameters a and b from triaxial test data for a specified n value is presented in detail, and it parallels Baker's earlier effort. Almost all previous studies on nonlinearity have concentrated on its effect on the factors of safety of slopes. This study provides a numerical method for evaluating the earth pressures on smooth retaining walls, under plane-strain conditions, for the case n≠1/2. When n=1/2, closed-form equations, which are nonexistent in the literature, were derived for both the earth pressures and the slip surfaces in two-dimensional plane-strain active and passive stress states. A new explicit formula is presented for the depth of tension cracks in plastic soils for n=1/2, whereas new implicit formulas are developed for n=1/3,2/3,and 3/4. The assumed value of this depth has a profound influence on the calculated factor of safety of a slope. Existing Rankine, Bell, and Coulomb formulas overestimate the passive resistance of geomaterial, and this study shows that the use of a nonlinear law predicts more realistic reduced values of passive resistance. Therefore, the factor of safety of 2 or more hitherto applied to passive resistance in the design of embedded walls can now be reduced to a lower value. A computer program was included for automatically determining the best n value that matches the triaxial test data together with the associated a and b and also for doing the rest of the calculations rapidly. As a consequence, a best-fit nonlinear power-type envelope can now be fitted effortlessly to the Hoek-Brown criterion." @default.
- W1971290315 created "2016-06-24" @default.
- W1971290315 creator A5059016681 @default.
- W1971290315 date "2015-02-01" @default.
- W1971290315 modified "2023-09-30" @default.
- W1971290315 title "Nonlinear Power-Type Failure Laws for Geomaterials: Synthesis from Triaxial Data, Properties, and Applications" @default.
- W1971290315 cites W1484784581 @default.
- W1971290315 cites W1506265168 @default.
- W1971290315 cites W1527243954 @default.
- W1971290315 cites W1681347317 @default.
- W1971290315 cites W1965233191 @default.
- W1971290315 cites W1969601858 @default.
- W1971290315 cites W1970296009 @default.
- W1971290315 cites W1970571880 @default.
- W1971290315 cites W1974895108 @default.
- W1971290315 cites W1976778210 @default.
- W1971290315 cites W1978810529 @default.
- W1971290315 cites W1979591352 @default.
- W1971290315 cites W1983318066 @default.
- W1971290315 cites W1985538056 @default.
- W1971290315 cites W1986514350 @default.
- W1971290315 cites W1988530307 @default.
- W1971290315 cites W1989232062 @default.
- W1971290315 cites W1991708022 @default.
- W1971290315 cites W1991716992 @default.
- W1971290315 cites W1993318141 @default.
- W1971290315 cites W1993780046 @default.
- W1971290315 cites W1995055531 @default.
- W1971290315 cites W1996754811 @default.
- W1971290315 cites W1997709982 @default.
- W1971290315 cites W1999272391 @default.
- W1971290315 cites W2005117692 @default.
- W1971290315 cites W2008671986 @default.
- W1971290315 cites W2009104691 @default.
- W1971290315 cites W2009900834 @default.
- W1971290315 cites W2011228714 @default.
- W1971290315 cites W2011832518 @default.
- W1971290315 cites W2014345251 @default.
- W1971290315 cites W2015510385 @default.
- W1971290315 cites W2016001988 @default.
- W1971290315 cites W2020520974 @default.
- W1971290315 cites W2020537939 @default.
- W1971290315 cites W2020664656 @default.
- W1971290315 cites W2023880102 @default.
- W1971290315 cites W2026691768 @default.
- W1971290315 cites W2035558988 @default.
- W1971290315 cites W2035952787 @default.
- W1971290315 cites W2037502018 @default.
- W1971290315 cites W2038599872 @default.
- W1971290315 cites W2041335242 @default.
- W1971290315 cites W2044038138 @default.
- W1971290315 cites W2046069713 @default.
- W1971290315 cites W2052185487 @default.
- W1971290315 cites W2053203490 @default.
- W1971290315 cites W2058953600 @default.
- W1971290315 cites W2061764776 @default.
- W1971290315 cites W2066373422 @default.
- W1971290315 cites W2067289417 @default.
- W1971290315 cites W2068799401 @default.
- W1971290315 cites W2068858387 @default.
- W1971290315 cites W2069668080 @default.
- W1971290315 cites W2072587327 @default.
- W1971290315 cites W2079505676 @default.
- W1971290315 cites W2080521991 @default.
- W1971290315 cites W2081981090 @default.
- W1971290315 cites W2084609950 @default.
- W1971290315 cites W2090218052 @default.
- W1971290315 cites W2090665228 @default.
- W1971290315 cites W2090721395 @default.
- W1971290315 cites W2091830134 @default.
- W1971290315 cites W2093634503 @default.
- W1971290315 cites W2111699946 @default.
- W1971290315 cites W2122510813 @default.
- W1971290315 cites W2126000360 @default.
- W1971290315 cites W2139161001 @default.
- W1971290315 cites W2152862373 @default.
- W1971290315 cites W2156429404 @default.
- W1971290315 cites W2157396933 @default.
- W1971290315 cites W2167080485 @default.
- W1971290315 cites W2167338862 @default.
- W1971290315 cites W2169325695 @default.
- W1971290315 cites W2180570280 @default.
- W1971290315 cites W2277775399 @default.
- W1971290315 cites W2312504187 @default.
- W1971290315 cites W2314300393 @default.
- W1971290315 cites W2356608650 @default.
- W1971290315 cites W2395818677 @default.
- W1971290315 cites W2397559619 @default.
- W1971290315 cites W2398966821 @default.
- W1971290315 cites W2493671548 @default.
- W1971290315 cites W2563506672 @default.
- W1971290315 cites W2762014969 @default.
- W1971290315 cites W3102675321 @default.
- W1971290315 cites W4237573929 @default.
- W1971290315 cites W4241773323 @default.
- W1971290315 cites W4251366914 @default.
- W1971290315 cites W4252192297 @default.
- W1971290315 cites W4256099856 @default.
- W1971290315 doi "https://doi.org/10.1061/(asce)gm.1943-5622.0000348" @default.
- W1971290315 hasPublicationYear "2015" @default.