Matches in SemOpenAlex for { <https://semopenalex.org/work/W1971328163> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1971328163 endingPage "215" @default.
- W1971328163 startingPage "195" @default.
- W1971328163 abstract "As is well known the real Heisenberg nilpotent group A(R) constitutes the group-theoretic embodiment of the Heisenberg canonical commutation relations (CCR) of classical quantum mechanics. In this connection, quantum mechanics stands for the quantum-mechanical description, at a given instant of time, of a non-relativistic microparticle moving in the one-dimensional configuration space R and having the plane R2 as its (flat) phase space. In fact, the (nilpotent) Lie algebra n of Ã(R) reflects the Weyl equations which are global versions of the Heisenberg CCR. Unfortunately, the subject of Heisenberg nilpotent groups is outside quantum mechanics and all the more outside mathematical physics not as commonly known as it should be considering its wide range of applications in a variety of different fields. The present paper which has two parts aims to develop a central topic of nilpotent harmonic analysis, to wit, the microparticle model, the lattice model which will be realized on the Heisenberg compact nilmanifold, and the complex wave model (or Bargmann-Fock-Segal model) of the linear Schrödinger representation of Ã(R) in order to examine geometrically several applications which are governed by the real Heisenberg nilpotent group Ã(R). These applications are in Part I the classical Whittaker-Shannon sampling theorem which is of basic importance in signal processing, to wit, for the transmission of digital signals as well as analog signals, and in Part II the Subbotin-Schoenberg existence and uniqueness theorem of cardinal spline interpolation. Moreover, Part II indicates briefly some connections of the aforementioned models to the Wigner phase-space quasiprobability density function of quantum statistical mechanics via the Schwartz kernels theory on unimodular Lie groups, an approach to the cross- and autoambiguity functions of radar synthesis, and to the Zak transform of solid state physics. The second part also points out some relations of harmonic analysis of the finite nilpotent group A(Z/NZ) to periodic spline interpolants admitting N equidistant knots on the one-dimensional compact torus group T. These last examples should serve mainly as hints for some further lines of investigations in the field of applications of nilpotent harmonic analysis." @default.
- W1971328163 created "2016-06-24" @default.
- W1971328163 creator A5009476235 @default.
- W1971328163 creator A5056402839 @default.
- W1971328163 date "1983-01-01" @default.
- W1971328163 modified "2023-09-27" @default.
- W1971328163 title "Gruppentheoretische aspekte der signalübertragung und der kardinalen interpolationssplines I" @default.
- W1971328163 cites W1489829319 @default.
- W1971328163 cites W1971607580 @default.
- W1971328163 cites W1981479929 @default.
- W1971328163 cites W1990419938 @default.
- W1971328163 cites W1997716450 @default.
- W1971328163 cites W2007935911 @default.
- W1971328163 cites W2021487409 @default.
- W1971328163 cites W2029002823 @default.
- W1971328163 cites W2050791253 @default.
- W1971328163 cites W2069384709 @default.
- W1971328163 cites W2078908559 @default.
- W1971328163 cites W2084052726 @default.
- W1971328163 cites W2094153222 @default.
- W1971328163 cites W2133240766 @default.
- W1971328163 cites W2503903818 @default.
- W1971328163 cites W2567032824 @default.
- W1971328163 cites W4210426676 @default.
- W1971328163 cites W4252713891 @default.
- W1971328163 cites W4301942664 @default.
- W1971328163 cites W657411047 @default.
- W1971328163 doi "https://doi.org/10.1002/mma.1670050115" @default.
- W1971328163 hasPublicationYear "1983" @default.
- W1971328163 type Work @default.
- W1971328163 sameAs 1971328163 @default.
- W1971328163 citedByCount "12" @default.
- W1971328163 countsByYear W19713281632013 @default.
- W1971328163 crossrefType "journal-article" @default.
- W1971328163 hasAuthorship W1971328163A5009476235 @default.
- W1971328163 hasAuthorship W1971328163A5056402839 @default.
- W1971328163 hasConcept C121332964 @default.
- W1971328163 hasConcept C127519595 @default.
- W1971328163 hasConcept C136119220 @default.
- W1971328163 hasConcept C181543814 @default.
- W1971328163 hasConcept C202444582 @default.
- W1971328163 hasConcept C33923547 @default.
- W1971328163 hasConcept C50555996 @default.
- W1971328163 hasConcept C51568863 @default.
- W1971328163 hasConcept C62520636 @default.
- W1971328163 hasConcept C84114770 @default.
- W1971328163 hasConcept C85856720 @default.
- W1971328163 hasConceptScore W1971328163C121332964 @default.
- W1971328163 hasConceptScore W1971328163C127519595 @default.
- W1971328163 hasConceptScore W1971328163C136119220 @default.
- W1971328163 hasConceptScore W1971328163C181543814 @default.
- W1971328163 hasConceptScore W1971328163C202444582 @default.
- W1971328163 hasConceptScore W1971328163C33923547 @default.
- W1971328163 hasConceptScore W1971328163C50555996 @default.
- W1971328163 hasConceptScore W1971328163C51568863 @default.
- W1971328163 hasConceptScore W1971328163C62520636 @default.
- W1971328163 hasConceptScore W1971328163C84114770 @default.
- W1971328163 hasConceptScore W1971328163C85856720 @default.
- W1971328163 hasIssue "1" @default.
- W1971328163 hasLocation W19713281631 @default.
- W1971328163 hasOpenAccess W1971328163 @default.
- W1971328163 hasPrimaryLocation W19713281631 @default.
- W1971328163 hasRelatedWork W1971328163 @default.
- W1971328163 hasRelatedWork W1990060164 @default.
- W1971328163 hasRelatedWork W2004427275 @default.
- W1971328163 hasRelatedWork W2068484083 @default.
- W1971328163 hasRelatedWork W2105858788 @default.
- W1971328163 hasRelatedWork W2149172734 @default.
- W1971328163 hasRelatedWork W2162843795 @default.
- W1971328163 hasRelatedWork W2963005948 @default.
- W1971328163 hasRelatedWork W2963450278 @default.
- W1971328163 hasRelatedWork W4200245941 @default.
- W1971328163 hasVolume "5" @default.
- W1971328163 isParatext "false" @default.
- W1971328163 isRetracted "false" @default.
- W1971328163 magId "1971328163" @default.
- W1971328163 workType "article" @default.