Matches in SemOpenAlex for { <https://semopenalex.org/work/W1971328211> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1971328211 endingPage "144" @default.
- W1971328211 startingPage "99" @default.
- W1971328211 abstract "Abstract In order to carry out effective signal processing for signal detection and estimation in scatter-dominated environments, it is necessary to obtain the needed probability distributions and probability densities (PDFs) of the received scatter. In general, the received scatter is non-Gaussian and often strongly so. It is also dominated by multiple-scatter contributions. This is particularly the case for (radar) scatter off random interfaces at small angles, e.g.ocean wave surfaces and terrain, as well as acoustically (sonar) off the ocean surface and bottom. For ‘classical’ theory, based on statistical-physical (S-P) models and methods, the analytical construction of the required PDFs is beyond the general reach of S-P theory. The present paper reviews, amplifies and extends with new material the author's recently developed physical-statistical (P-S) alternative equivalent to classical (S-P) formulations. Here the fundamental innovation, starting with the basic Langevin equation of propagation in operational form, is to replace the explicit physical model, including boundary and initial conditions, with a purely statistical model based on a counting functional representation of the scattering process. A decomposition principle (DP) establishes the independence of different (k≥1) orders of multiple scatter. This in turn leads to the application of Poisson statistics, from which the characteristic functions of each scatter order and their totality can then be constructed. The appropriate Fourier and Hilbert transforms next provide the desired (first-order) PDFs and exceedance probabilities (EPs). Characteristic two-scale environments are next considered, in which the scattering ensemble is accordingly modulated slowly vis-á-vis the more rapidly decorrelating local scatter. For this it is shown that the modulation effect is physically well modelled by a Γ-PDF. The result is the well known Jakeman K-distribution. In addition, when there are a few ‘large’ scatterers (e.g.breaking waves, bubble patches, irregular terrain, etc), the author's canonical classA non-Gaussian noise model is indicated and results in the new KA-PDF. The latter is also a common phenomenon, as shown by sample data from radar and sonar experiments, and is well replicated by theory. Both ‘single-look’ and ‘multiple-look’ results are developed for the first-order PDFs and exceedance probabilities of the normalized envelope sums ϵL(=∑lϵl) under I.i.d.conditions. A number of equivalent analytic methods for evaluating their integral forms are also developed for the more complex cases including coherent components (signals) and accompanying ambient noise. Finally, using the classical operational form of the Langevin equation for the scattered field, one can readily show that the (nonlinear) Rytov approximation (∼ exp ψ1) contains all orders (k≥1) of scatter versus the weak-scatter Born approximation, which is linear and limited to single scatter (k=1). Furthermore, it is seen that the Rytov approximation is a quasi-weak approximation, since its magnitude is limited to |ψ1|≪2, but is still better than the Born approach, as expected. Under these conditions the Rytov approximation supports a log-normal (first-order) PDF. The paper concludes with a concise comparison of the various capabilities of the P-S and classical S-P approaches to scattering phenomena, along with the scope of the resulting PDFs in describing clutter and reverberation." @default.
- W1971328211 created "2016-06-24" @default.
- W1971328211 creator A5031221447 @default.
- W1971328211 date "2002-01-01" @default.
- W1971328211 modified "2023-10-18" @default.
- W1971328211 title "New results in applied scattering theory: the physical-statistics approach, including strong multiple scatter versus classical statistical-physical methods* and the Born and Rytov approximations versus exact strong scatter probability distributions" @default.
- W1971328211 cites W172020259 @default.
- W1971328211 cites W1926440615 @default.
- W1971328211 cites W2018414925 @default.
- W1971328211 cites W2049549449 @default.
- W1971328211 cites W2068922257 @default.
- W1971328211 cites W2069252441 @default.
- W1971328211 cites W2094178220 @default.
- W1971328211 cites W2103929777 @default.
- W1971328211 cites W2108099795 @default.
- W1971328211 cites W2117461093 @default.
- W1971328211 cites W2147360511 @default.
- W1971328211 cites W2160216316 @default.
- W1971328211 cites W2164793092 @default.
- W1971328211 cites W2171998198 @default.
- W1971328211 cites W4249664009 @default.
- W1971328211 doi "https://doi.org/10.1088/0959-7174/12/1/307" @default.
- W1971328211 hasPublicationYear "2002" @default.
- W1971328211 type Work @default.
- W1971328211 sameAs 1971328211 @default.
- W1971328211 citedByCount "2" @default.
- W1971328211 countsByYear W19713282112012 @default.
- W1971328211 crossrefType "journal-article" @default.
- W1971328211 hasAuthorship W1971328211A5031221447 @default.
- W1971328211 hasConcept C105795698 @default.
- W1971328211 hasConcept C121332964 @default.
- W1971328211 hasConcept C121864883 @default.
- W1971328211 hasConcept C134306372 @default.
- W1971328211 hasConcept C149441793 @default.
- W1971328211 hasConcept C163716315 @default.
- W1971328211 hasConcept C191486275 @default.
- W1971328211 hasConcept C197055811 @default.
- W1971328211 hasConcept C28826006 @default.
- W1971328211 hasConcept C33923547 @default.
- W1971328211 hasConcept C35651441 @default.
- W1971328211 hasConcept C48057537 @default.
- W1971328211 hasConcept C62520636 @default.
- W1971328211 hasConcept C8272713 @default.
- W1971328211 hasConceptScore W1971328211C105795698 @default.
- W1971328211 hasConceptScore W1971328211C121332964 @default.
- W1971328211 hasConceptScore W1971328211C121864883 @default.
- W1971328211 hasConceptScore W1971328211C134306372 @default.
- W1971328211 hasConceptScore W1971328211C149441793 @default.
- W1971328211 hasConceptScore W1971328211C163716315 @default.
- W1971328211 hasConceptScore W1971328211C191486275 @default.
- W1971328211 hasConceptScore W1971328211C197055811 @default.
- W1971328211 hasConceptScore W1971328211C28826006 @default.
- W1971328211 hasConceptScore W1971328211C33923547 @default.
- W1971328211 hasConceptScore W1971328211C35651441 @default.
- W1971328211 hasConceptScore W1971328211C48057537 @default.
- W1971328211 hasConceptScore W1971328211C62520636 @default.
- W1971328211 hasConceptScore W1971328211C8272713 @default.
- W1971328211 hasIssue "1" @default.
- W1971328211 hasLocation W19713282111 @default.
- W1971328211 hasOpenAccess W1971328211 @default.
- W1971328211 hasPrimaryLocation W19713282111 @default.
- W1971328211 hasRelatedWork W1971430736 @default.
- W1971328211 hasRelatedWork W1980528650 @default.
- W1971328211 hasRelatedWork W1990418105 @default.
- W1971328211 hasRelatedWork W2055869823 @default.
- W1971328211 hasRelatedWork W2348053484 @default.
- W1971328211 hasRelatedWork W2893341095 @default.
- W1971328211 hasRelatedWork W3199393239 @default.
- W1971328211 hasRelatedWork W4241043257 @default.
- W1971328211 hasRelatedWork W4249885815 @default.
- W1971328211 hasRelatedWork W4255207566 @default.
- W1971328211 hasVolume "12" @default.
- W1971328211 isParatext "false" @default.
- W1971328211 isRetracted "false" @default.
- W1971328211 magId "1971328211" @default.
- W1971328211 workType "article" @default.