Matches in SemOpenAlex for { <https://semopenalex.org/work/W1971873200> ?p ?o ?g. }
- W1971873200 endingPage "754" @default.
- W1971873200 startingPage "748" @default.
- W1971873200 abstract "Escherichia coli possesses a flavohemoglobin (Hmp), product of hmp, the first microbial globin gene to be sequenced and characterized at the molecular level. Although related proteins occur in numerous prokaryotes and eukaryotic microorganisms, the function(s) of these proteins have been elusive. Here we report construction of a defined hmp mutation and its use to probe Hmp function. As anticipated from up-regulation ofhmp expression by nitric oxide (NO),S-nitrosoglutathione (GSNO) or sodium nitroprusside (SNP), the hmp mutant is hypersensitive to these agents. Thehmp promoter is more sensitive to SNP andS-nitroso-N-penicillamine (SNAP) than is thesoxS promoter, consistent with the role of Hmp in protection from reactive nitrogen species. Additional functions for Hmp are indicated by (a) parallel sensitivity of thehmp mutant to the redox-cycling agent, paraquat, (b) inability of the mutant to up-regulate fully thesoxS and sodA promoters in response to oxidative stress caused by paraquat, GSNO and SNP, and (c) failure of the mutant to accumulate reduced paraquat radical after anoxic growth. We conclude that Hmp plays a role in protection from nitrosating agents and NO-related species and oxidative stress. This protective role probably involves direct detoxification of those species and sensing of NO-related and oxidative stress. Escherichia coli possesses a flavohemoglobin (Hmp), product of hmp, the first microbial globin gene to be sequenced and characterized at the molecular level. Although related proteins occur in numerous prokaryotes and eukaryotic microorganisms, the function(s) of these proteins have been elusive. Here we report construction of a defined hmp mutation and its use to probe Hmp function. As anticipated from up-regulation ofhmp expression by nitric oxide (NO),S-nitrosoglutathione (GSNO) or sodium nitroprusside (SNP), the hmp mutant is hypersensitive to these agents. Thehmp promoter is more sensitive to SNP andS-nitroso-N-penicillamine (SNAP) than is thesoxS promoter, consistent with the role of Hmp in protection from reactive nitrogen species. Additional functions for Hmp are indicated by (a) parallel sensitivity of thehmp mutant to the redox-cycling agent, paraquat, (b) inability of the mutant to up-regulate fully thesoxS and sodA promoters in response to oxidative stress caused by paraquat, GSNO and SNP, and (c) failure of the mutant to accumulate reduced paraquat radical after anoxic growth. We conclude that Hmp plays a role in protection from nitrosating agents and NO-related species and oxidative stress. This protective role probably involves direct detoxification of those species and sensing of NO-related and oxidative stress. The best known members of the ancient globin superfamily are the hemoglobins of vertebrate blood and intramuscular myoglobin (1Riggs A.F. Am. Zool. 1991; 31: 535-545Crossref Scopus (38) Google Scholar), which are primarily responsible for oxygen delivery and storage in animals, although the circulating hemoglobin has also been implicated in transport of NO 1The abbreviations used are: NO, nitric oxide; SNP, sodium nitroprusside; GSNO, S-nitrosoglutathione; SNAP, S-nitroso-N-penicillamine; MOPS, 4-morpholinepropanesulfonic acid; kb, kilobase pair(s). 1The abbreviations used are: NO, nitric oxide; SNP, sodium nitroprusside; GSNO, S-nitrosoglutathione; SNAP, S-nitroso-N-penicillamine; MOPS, 4-morpholinepropanesulfonic acid; kb, kilobase pair(s). (2Gow A.J. Stamler J.S. Nature. 1998; 391: 169-173Crossref PubMed Scopus (511) Google Scholar). It is now clear that homologous hemoglobins also occur in many bacteria and yeast as well as in invertebrates and higher plants (3Hardison R. J. Exp. Biol. 1998; 201: 1099-1117Crossref PubMed Google Scholar). Microbial hemoglobins are divisible into two groups: dimeric hemoproteins comprising two polypeptides each having one heme, as inVitreoscilla VGB (4Wakabayashi S. Matsubara H. Webster D.A. Nature. 1986; 331: 633-635Google Scholar), and monomeric, chimeric flavohemoproteins composed of a single polypeptide having both a single heme and FAD. The sequence of the hmp gene (5Vasudevan S.G. Armarego W.L.F. Shaw D.C. Lilley P.E. Dixon N.E. Poole R.K. Mol. Gen. Genet. 1991; 226: 49-58Crossref PubMed Scopus (182) Google Scholar), encoding the prototype of the latter class, Escherichia coli Hmp, has revealed an N-terminal domain homologous to vertebrate, plant, andVitreoscilla globins, whereas a C-terminal domain has FAD- and NAD(P)H-binding sites as in proteins in the ferredoxin-NADP reductase family (6Andrews S.C. Shipley D. Keen J.N. Findlay J.B.C. Harrison P.M. Guest J.R. FEBS Lett. 1992; 302: 247-252Crossref PubMed Scopus (89) Google Scholar). Closely related flavohemoglobins occur in the yeasts Saccharomyces cerevisiae (7Zhu H. Riggs A.F. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 5015-5019Crossref PubMed Scopus (136) Google Scholar) and Candida norvegensis (8Iwaasa H. Takagi T. Shikama K. J. Mol. Biol. 1992; 227: 948-954Crossref PubMed Scopus (49) Google Scholar) and in the bacteria Alcaligenes eutrophus (9Cramm R. Siddiqui R.A. Friedrich B. J. Biol. Chem. 1994; 269: 7349-7354Abstract Full Text PDF PubMed Google Scholar), Erwinia chrysanthemi (10Favey S. Labesse G. Vouille V. Boccara M. Microbiology. 1995; 141: 863-871Crossref PubMed Scopus (65) Google Scholar), andBacillus subtilis (11LaCelle M. Kumano M. Kurita K. Yamane K. Zuber P. Nakano M.M. J. Bacteriol. 1996; 178: 3803-3808Crossref PubMed Google Scholar). On the basis of polymerase chain reaction experiments (12Membrillo-Hernández J. Poole R.K. FEMS Microbiol. Lett. 1997; 155: 179-184Crossref PubMed Scopus (17) Google Scholar) and genome sequencing projects,e.g. that on Mycobacterium tuberculosis (13Cole S.T. et al.Nature. 1998; 393: 537-544Crossref PubMed Scopus (6446) Google Scholar), related hemoglobins are predicted to be also present in many other bacteria.The functions of microbial globins have been elusive. Based on up-regulation of the Vitreoscilla globin at low oxygen tensions (14Dikshit K.L. Spaulding D. Braun A. Webster D.A. J. Gen. Microbiol. 1989; 135: 2601-2609PubMed Google Scholar) and the ability of this protein to restore aerobic respiration when expressed in oxidase-deficient E. colimutants (15Dikshit R.P. Dikshit K.L. Liu Y.X. Webster D.A. Arch. Biochem. Biophys. 1992; 293: 241-245Crossref PubMed Scopus (96) Google Scholar), VGB has been implicated in oxygen storage, delivery, or reduction (16Khosla C. Bailey J.E. J. Mol. Biol. 1989; 210: 79-89Crossref PubMed Scopus (58) Google Scholar). The E. coli Hmp protein also consumes oxygen (17Poole R.K. Ioannidis N. Orii Y. Proc. R. Soc. Lond. B Biol. Sci. 1994; 255: 251-258Crossref PubMed Scopus (56) Google Scholar) and reduces various acceptors, including cytochrome c(18Poole R.K. Rogers N.J. D'mello R.A.M. Hughes M.N. Orii Y. Microbiology. 1997; 143: 1557-1565Crossref PubMed Scopus (31) Google Scholar), Fe(III) (6Andrews S.C. Shipley D. Keen J.N. Findlay J.B.C. Harrison P.M. Guest J.R. FEBS Lett. 1992; 302: 247-252Crossref PubMed Scopus (89) Google Scholar, 19Eschenbrenner M. Coves J. Fontecave M. Biochem. Biophys. Res. Commun. 1994; 198: 127-131Crossref PubMed Scopus (20) Google Scholar, 20Membrillo-Hernández J. Ioannidis N. Poole R.K. FEBS Lett. 1997; 382: 141-144Crossref Scopus (60) Google Scholar), and the Azotobacter regulatory flavoprotein NifL (21Macheroux P. Hill S. Austin S. Eydmann T. Jones T. Kim S.O. Poole R.K. Dixon R. Biochem. J. 1998; 332: 413-419Crossref PubMed Scopus (57) Google Scholar). This dual ability might allow Hmp to act as an oxygen sensor (17Poole R.K. Ioannidis N. Orii Y. Proc. R. Soc. Lond. B Biol. Sci. 1994; 255: 251-258Crossref PubMed Scopus (56) Google Scholar, 22Poole R.K. Antonie van Leeuwenhoek. 1994; 69: 289-310Crossref Scopus (82) Google Scholar).The first evidence that Hmp might function in responses to NO came from the discovery that its expression is markedly up-regulated by NO, both aerobically and anaerobically (23Poole R.K. Anjum M.F. Membrillo-Hernández J. Kim S.O. Hughes M.N. Stewart V. J. Bacteriol. 1996; 178: 5487-5492Crossref PubMed Scopus (206) Google Scholar). Bacillus subtilis hmp B is also induced by nitrite (11LaCelle M. Kumano M. Kurita K. Yamane K. Zuber P. Nakano M.M. J. Bacteriol. 1996; 178: 3803-3808Crossref PubMed Google Scholar). Furthermore, inA. eutrophus, mutation of the hmp homologue,fhp, results in failure to detect nitrous oxide as an intermediate during denitrification (9Cramm R. Siddiqui R.A. Friedrich B. J. Biol. Chem. 1994; 269: 7349-7354Abstract Full Text PDF PubMed Google Scholar). Recently the Salmonella typhimurium flavohemoglobin has been shown to confer resistance to acidified nitrite (and thus presumably NO) andS-nitrosothiols (24Crawford M.J. Goldberg D.E. J. Biol. Chem. 1998; 273: 12543-12547Abstract Full Text Full Text PDF PubMed Scopus (155) Google Scholar), and E. coli Hmp has been shown to have NO dioxygenase activity (25Gardner P.R. Gardner A.M. Martin L.A. Salzman A.L. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 10378-10383Crossref PubMed Scopus (492) Google Scholar). These findings implicate bacterial flavohemoglobins in detoxification or utilization of NO.However, other evidence suggests that microbial flavohemoglobins are involved in responses to oxidative stress. Paraquat (1,1′-dimethyl-4–4′-bipyridinium dichloride; methyl viologen) is a strong inducer of the hmp gene, independently of the SoxRS regulatory system (26Membrillo-Hernández J. Kim S.O. Cook G.M. Poole R.K. J. Bacteriol. 1997; 179: 3164-3170Crossref PubMed Google Scholar), and Hmp itself generates superoxide anion, detectable using a superoxide-sensitive Φ(sodA-lacZ) fusion or with the purified protein (20Membrillo-Hernández J. Ioannidis N. Poole R.K. FEBS Lett. 1997; 382: 141-144Crossref Scopus (60) Google Scholar). The yeast flavohemoglobin encoded by the YHB1 gene is also induced by agents that promote oxidative stress and antimycin A (27Zhao X.-J. Raitt D. Burke P.V. Clewell A.S. Kwast K.E. Poyton R.O. J. Biol. Chem. 1996; 271: 25131-25138Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar), but a subsequent re-examination has produced conflicting views (28Buisson N. Labbe-Bois R. J. Biol. Chem. 1998; 273: 9527-9533Abstract Full Text Full Text PDF PubMed Scopus (43) Google Scholar).To resolve whether E. coli Hmp is important in responses to oxidative stress or NO, or both, we have constructed the first defined null allele of hmp and used this mutant to test responses to paraquat, sodium nitroprusside (SNP, a nitrosating agent) andS-nitrosoglutathione (GSNO) andS-nitroso-N-penicillamine (SNAP), the last two being widely used as NO-releasing agents. In addition, since the SoxRS system has been shown to respond to both oxidative stress and NO (29Nunoshiba T. de Rojas-Walker T. Tannenbaum S.R. Demple B. Infect. Immun. 1995; 63: 794-798Crossref PubMed Google Scholar,30Nunoshiba T. DeRojas T. Wishnok J.S. Tannenbaum S.R. Demple B. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 9993-9997Crossref PubMed Scopus (278) Google Scholar), we have compared the response of the hmp andsoxS promoters to challenge with “NO-releasing” agents. These data suggest that Hmp is pre-eminently involved in responses to NO and related reactive nitrogen species.DISCUSSIONSeveral possible functions have been proposed for bacterial hemoglobins, including oxygen storage and delivery (4Wakabayashi S. Matsubara H. Webster D.A. Nature. 1986; 331: 633-635Google Scholar), as terminal oxidase (15Dikshit R.P. Dikshit K.L. Liu Y.X. Webster D.A. Arch. Biochem. Biophys. 1992; 293: 241-245Crossref PubMed Scopus (96) Google Scholar), in denitrification (9Cramm R. Siddiqui R.A. Friedrich B. J. Biol. Chem. 1994; 269: 7349-7354Abstract Full Text PDF PubMed Google Scholar) and as oxygen sensor (17Poole R.K. Ioannidis N. Orii Y. Proc. R. Soc. Lond. B Biol. Sci. 1994; 255: 251-258Crossref PubMed Scopus (56) Google Scholar). While this work was being reviewed, Gardner et al. (25Gardner P.R. Gardner A.M. Martin L.A. Salzman A.L. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 10378-10383Crossref PubMed Scopus (492) Google Scholar) reported that Hmp has NO dioxygenase activity and that a mutant carrying an undefined deletion that extends into hmp is more sensitive to growth inhibition by NO and lacks the NO-consuming activity of the parent strain. In this paper we directly addressed the function ofE. coli Hmp by constructing a genetically marked null allele of hmp and characterizing the hmp mutant strain.No microbial globin described to date appears to be essential for either aerobic or anaerobic growth under normal laboratory conditions. For example, destruction of the S. cerevisiae globin by ethyl hydrogen peroxide (48Oshino R. Oshino N. Chance B. Hagihara B. Eur. J. Biochem. 1973; 35: 23-33Crossref PubMed Scopus (49) Google Scholar) or mutation (27Zhao X.-J. Raitt D. Burke P.V. Clewell A.S. Kwast K.E. Poyton R.O. J. Biol. Chem. 1996; 271: 25131-25138Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 49Crawford M.J. Sherman D.R. Goldberg D.E. J. Biol. Chem. 1995; 270: 6991-6996Abstract Full Text Full Text PDF PubMed Scopus (44) Google Scholar) did not alter respiration rates, cell viability, or growth under a variety of oxygen conditions and with various carbon sources. Mutation of hmpXin the plant pathogenic bacterium Erwinia chrysanthemi does not affect growth in either aerobic or microaerobic conditions, buthmpX mutants are compromised in their pathogenic effects (10Favey S. Labesse G. Vouille V. Boccara M. Microbiology. 1995; 141: 863-871Crossref PubMed Scopus (65) Google Scholar). Likewise, we show here that loss of Hmp is not detrimental to respiration or growth under common laboratory conditions. The only growth defect found thus far for the hmp mutant is in the stationary phase of growth where it attained a slightly lower population density; it may be significant that hmp is normally induced in stationary phase (42Membrillo-Hernández J. Cook G.M. Poole R.K. Mol. Gen. Genet. 1997; 254: 599-603Crossref PubMed Scopus (25) Google Scholar). The possible roles for Hmp in stationary phase survival and the possibility of more subtle effects of loss of Hmp on growth under certain conditions remain to be studied.An important outcome of this work is that the hmp mutant is more sensitive than its isogenic parent to SNP and GSNO. Although the latter is widely used as an NO-releasing agent, both compounds may act similarly as nitrosating agents (50Membrillo-Hernández J. Coopamah M.D. Channa A. Hughes M.N. Poole R.K. Mol. Microbiol. 1998; 29: 1101-1112Crossref PubMed Scopus (80) Google Scholar). Responses to SNP and GSNO are of special interest, since we have recently elucidated a novel mechanism for hmp up-regulation via nitrosation of homocysteine thus modulating binding of MetR to the glyA-hmp intergenic region (50Membrillo-Hernández J. Coopamah M.D. Channa A. Hughes M.N. Poole R.K. Mol. Microbiol. 1998; 29: 1101-1112Crossref PubMed Scopus (80) Google Scholar). Other mechanisms of toxicity of SNP and GSNO are poorly understood, but such nitrosating agents are expected to be reactive with thiols and may interact with the Fe-S cluster of SoxR preventing full induction of soxS, sodA, and other stress-responsive genes.The finding that Hmp is involved in surviving the oxidative stress caused by paraquat or “NO releasers” is consistent with the results of previous studies with the hemoglobins of S. cerevisiaeand E. chrysanthemi (10Favey S. Labesse G. Vouille V. Boccara M. Microbiology. 1995; 141: 863-871Crossref PubMed Scopus (65) Google Scholar, 27Zhao X.-J. Raitt D. Burke P.V. Clewell A.S. Kwast K.E. Poyton R.O. J. Biol. Chem. 1996; 271: 25131-25138Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar). Mutations in the S. cerevisiae YHB gene conferred increased sensitivity to oxidative stress from the thiol oxidants diamide and diethylmaleate, but paraquat had only a minor effect on the YHB mutant (27Zhao X.-J. Raitt D. Burke P.V. Clewell A.S. Kwast K.E. Poyton R.O. J. Biol. Chem. 1996; 271: 25131-25138Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar). In E. chrysanthemi, mutations in the gene hmpX conferred loss of plant pathogenicity (10Favey S. Labesse G. Vouille V. Boccara M. Microbiology. 1995; 141: 863-871Crossref PubMed Scopus (65) Google Scholar); it was speculated that this was due to increased sensitivity to oxygen radicals, but the recent discovery (51Delledone M. Xia Y. Dixon R.A. Lamb C. Nature. 1998; 394: 585-588Crossref PubMed Scopus (1494) Google Scholar) that plants utilize NO to resist pathogenic bacteria suggests thathmpX might also be involved in NO responses inErwinia.Following reaction of paraquat with oxygen to generate superoxide, the oxidized divalent paraquat cation formed can be re-reduced leading to redox cycling and sustained superoxide generation. Paraquat reductases (diaphorases) identified in E. coli are ferredoxin:NADP+ oxidoreductase, thioredoxin reductase, and NADPH:sulfite reductase (31Bianchi V. Haggård-Ljungquist E. Pontis E. Reichard P. J. Bacteriol. 1995; 177: 4528-4531Crossref PubMed Google Scholar, 45Liochev S.I. Hausladen A. Beyer W.F. Fridovich I. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 1328-1331Crossref PubMed Scopus (123) Google Scholar, 52Gaudu P. Fontecave M. Eur. J. Biochem. 1994; 226: 459-463Crossref PubMed Scopus (12) Google Scholar). Although hmp is up-regulated by paraquat, purified Hmp is not itself an effective reductant of paraquat with NADH or NADPH as substrate, 2S. O. Kim and R. K. Poole, unpublished data. consistent with the much higher midpoint potential of the flavin (around −150 mV) for the 2-electron reduction from FAD to FADH2 (53Cooper C.E. Ioannidis N. D'mello R. Poole R.K. Biochem. Soc. Trans. 1994; 22: 709-713Crossref PubMed Scopus (20) Google Scholar) than of paraquat (E 0′ −446 mV) (54Dawson R.M.C. Elliott D.C. Elliott W.H. Jones K.M. Data for Biochemical Research. 3rd Ed. Clarendon Press, Oxford1986: 350-359Google Scholar). It is therefore unlikely that the accumulation of reduced paraquat in anoxic cell suspensions (Fig. 6) is due to direct reduction by Hmp. More likely, the presence of Hmp is required for full induction of components of the oxidative stress response (Fig. 3). One candidate for the paraquat-reducing enzyme is NADPH:ferredoxin oxidoreductase (45Liochev S.I. Hausladen A. Beyer W.F. Fridovich I. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 1328-1331Crossref PubMed Scopus (123) Google Scholar), a member of the soxRS regulon.A paradoxical aspect of the induction of hmp by paraquat is that Hmp itself generates free superoxide (20Membrillo-Hernández J. Ioannidis N. Poole R.K. FEBS Lett. 1997; 382: 141-144Crossref Scopus (60) Google Scholar). This, and the present finding that an hmp mutant fails to elicit full responses to the presence of paraquat (Fig. 3), may be reconciled by considering Hmp as an amplifier of oxidative stress. In this model, paraquat (possibly via superoxide anion) induces synthesis of Hmp, which generates further superoxide, resulting in the activation of SoxR and the cascade of regulatory processes that result in oxidative stress responses. Such a mechanism may explain the increased sensitivity of the hmpmutant to paraquat (Fig. 2). The extreme paraquat sensitivity of thefpr mutant confirms the findings of Bianchi et al. (31Bianchi V. Haggård-Ljungquist E. Pontis E. Reichard P. J. Bacteriol. 1995; 177: 4528-4531Crossref PubMed Google Scholar), and we report for the first time the additional sensitivity of the fpr mutant to GSNO and SNP; the mechanism for neither effect is known.Interestingly, hmp up-regulation appears to respond to lower concentrations of SNP and SNAP than does transcription ofsoxS. This lends support to the view that Hmp may be an early component of the regulatory cascade. Several possible mechanisms can be envisaged. First, superoxide generation by Hmp might directly facilitate conversion of SoxR to the active form, perhaps by reaction with the FeS cluster (55Hidalgo E. Ding H.G. Demple B. Trends Biochem. Soc. 1997; 22: 207-210Abstract Full Text PDF PubMed Scopus (113) Google Scholar). NAD(P)H:flavin oxidoreductase activity (Fre) has also been demonstrated to induce soxRS-regulated genes by superoxide generation (56Gaudu P. Touati D. Nivière V. Fontecave M. J. Biol. Chem. 1994; 269: 8182-8188Abstract Full Text PDF PubMed Google Scholar). Second, Hmp is an NADH (43Ioannidis N. Cooper C.E. Poole R.K. Biochem. J. 1992; 288: 649-655Crossref PubMed Scopus (66) Google Scholar) and NADPH oxidase (57Anjum M.F. Ioannidis N. Poole R.K. FEMS Microbiol. Lett. 1998; 166: 219-223Crossref PubMed Scopus (22) Google Scholar), and its activity will contribute to reducing the anabolic reduction charge ([NADPH]/[NADPH] + [NADP+]) (58Gardner P.R. Fridovich I. J. Biol. Chem. 1993; 268: 12958-12963Abstract Full Text PDF PubMed Google Scholar) that has been regarded as one of the possible signals for SoxR. Such regulatory influences of Hmp on genes involved in stress response would be reinforced by the ability of Hmp to directly convert NO to the relatively innocuous NO3− ion by reaction of NO with oxy-Hmp, recently demonstrated in Ref. 25Gardner P.R. Gardner A.M. Martin L.A. Salzman A.L. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 10378-10383Crossref PubMed Scopus (492) Google Scholar, but such a mechanism cannot explain the anaerobic roles of Hmp in protecting cells from NO reported recently (24Crawford M.J. Goldberg D.E. J. Biol. Chem. 1998; 273: 12543-12547Abstract Full Text Full Text PDF PubMed Scopus (155) Google Scholar, 25Gardner P.R. Gardner A.M. Martin L.A. Salzman A.L. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 10378-10383Crossref PubMed Scopus (492) Google Scholar). Such mechanisms are currently under investigation in this laboratory. The best known members of the ancient globin superfamily are the hemoglobins of vertebrate blood and intramuscular myoglobin (1Riggs A.F. Am. Zool. 1991; 31: 535-545Crossref Scopus (38) Google Scholar), which are primarily responsible for oxygen delivery and storage in animals, although the circulating hemoglobin has also been implicated in transport of NO 1The abbreviations used are: NO, nitric oxide; SNP, sodium nitroprusside; GSNO, S-nitrosoglutathione; SNAP, S-nitroso-N-penicillamine; MOPS, 4-morpholinepropanesulfonic acid; kb, kilobase pair(s). 1The abbreviations used are: NO, nitric oxide; SNP, sodium nitroprusside; GSNO, S-nitrosoglutathione; SNAP, S-nitroso-N-penicillamine; MOPS, 4-morpholinepropanesulfonic acid; kb, kilobase pair(s). (2Gow A.J. Stamler J.S. Nature. 1998; 391: 169-173Crossref PubMed Scopus (511) Google Scholar). It is now clear that homologous hemoglobins also occur in many bacteria and yeast as well as in invertebrates and higher plants (3Hardison R. J. Exp. Biol. 1998; 201: 1099-1117Crossref PubMed Google Scholar). Microbial hemoglobins are divisible into two groups: dimeric hemoproteins comprising two polypeptides each having one heme, as inVitreoscilla VGB (4Wakabayashi S. Matsubara H. Webster D.A. Nature. 1986; 331: 633-635Google Scholar), and monomeric, chimeric flavohemoproteins composed of a single polypeptide having both a single heme and FAD. The sequence of the hmp gene (5Vasudevan S.G. Armarego W.L.F. Shaw D.C. Lilley P.E. Dixon N.E. Poole R.K. Mol. Gen. Genet. 1991; 226: 49-58Crossref PubMed Scopus (182) Google Scholar), encoding the prototype of the latter class, Escherichia coli Hmp, has revealed an N-terminal domain homologous to vertebrate, plant, andVitreoscilla globins, whereas a C-terminal domain has FAD- and NAD(P)H-binding sites as in proteins in the ferredoxin-NADP reductase family (6Andrews S.C. Shipley D. Keen J.N. Findlay J.B.C. Harrison P.M. Guest J.R. FEBS Lett. 1992; 302: 247-252Crossref PubMed Scopus (89) Google Scholar). Closely related flavohemoglobins occur in the yeasts Saccharomyces cerevisiae (7Zhu H. Riggs A.F. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 5015-5019Crossref PubMed Scopus (136) Google Scholar) and Candida norvegensis (8Iwaasa H. Takagi T. Shikama K. J. Mol. Biol. 1992; 227: 948-954Crossref PubMed Scopus (49) Google Scholar) and in the bacteria Alcaligenes eutrophus (9Cramm R. Siddiqui R.A. Friedrich B. J. Biol. Chem. 1994; 269: 7349-7354Abstract Full Text PDF PubMed Google Scholar), Erwinia chrysanthemi (10Favey S. Labesse G. Vouille V. Boccara M. Microbiology. 1995; 141: 863-871Crossref PubMed Scopus (65) Google Scholar), andBacillus subtilis (11LaCelle M. Kumano M. Kurita K. Yamane K. Zuber P. Nakano M.M. J. Bacteriol. 1996; 178: 3803-3808Crossref PubMed Google Scholar). On the basis of polymerase chain reaction experiments (12Membrillo-Hernández J. Poole R.K. FEMS Microbiol. Lett. 1997; 155: 179-184Crossref PubMed Scopus (17) Google Scholar) and genome sequencing projects,e.g. that on Mycobacterium tuberculosis (13Cole S.T. et al.Nature. 1998; 393: 537-544Crossref PubMed Scopus (6446) Google Scholar), related hemoglobins are predicted to be also present in many other bacteria. The functions of microbial globins have been elusive. Based on up-regulation of the Vitreoscilla globin at low oxygen tensions (14Dikshit K.L. Spaulding D. Braun A. Webster D.A. J. Gen. Microbiol. 1989; 135: 2601-2609PubMed Google Scholar) and the ability of this protein to restore aerobic respiration when expressed in oxidase-deficient E. colimutants (15Dikshit R.P. Dikshit K.L. Liu Y.X. Webster D.A. Arch. Biochem. Biophys. 1992; 293: 241-245Crossref PubMed Scopus (96) Google Scholar), VGB has been implicated in oxygen storage, delivery, or reduction (16Khosla C. Bailey J.E. J. Mol. Biol. 1989; 210: 79-89Crossref PubMed Scopus (58) Google Scholar). The E. coli Hmp protein also consumes oxygen (17Poole R.K. Ioannidis N. Orii Y. Proc. R. Soc. Lond. B Biol. Sci. 1994; 255: 251-258Crossref PubMed Scopus (56) Google Scholar) and reduces various acceptors, including cytochrome c(18Poole R.K. Rogers N.J. D'mello R.A.M. Hughes M.N. Orii Y. Microbiology. 1997; 143: 1557-1565Crossref PubMed Scopus (31) Google Scholar), Fe(III) (6Andrews S.C. Shipley D. Keen J.N. Findlay J.B.C. Harrison P.M. Guest J.R. FEBS Lett. 1992; 302: 247-252Crossref PubMed Scopus (89) Google Scholar, 19Eschenbrenner M. Coves J. Fontecave M. Biochem. Biophys. Res. Commun. 1994; 198: 127-131Crossref PubMed Scopus (20) Google Scholar, 20Membrillo-Hernández J. Ioannidis N. Poole R.K. FEBS Lett. 1997; 382: 141-144Crossref Scopus (60) Google Scholar), and the Azotobacter regulatory flavoprotein NifL (21Macheroux P. Hill S. Austin S. Eydmann T. Jones T. Kim S.O. Poole R.K. Dixon R. Biochem. J. 1998; 332: 413-419Crossref PubMed Scopus (57) Google Scholar). This dual ability might allow Hmp to act as an oxygen sensor (17Poole R.K. Ioannidis N. Orii Y. Proc. R. Soc. Lond. B Biol. Sci. 1994; 255: 251-258Crossref PubMed Scopus (56) Google Scholar, 22Poole R.K. Antonie van Leeuwenhoek. 1994; 69: 289-310Crossref Scopus (82) Google Scholar). The first evidence that Hmp might function in responses to NO came from the discovery that its expression is markedly up-regulated by NO, both aerobically and anaerobically (23Poole R.K. Anjum M.F. Membrillo-Hernández J. Kim S.O. Hughes M.N. Stewart V. J. Bacteriol. 1996; 178: 5487-5492Crossref PubMed Scopus (206) Google Scholar). Bacillus subtilis hmp B is also induced by nitrite (11LaCelle M. Kumano M. Kurita K. Yamane K. Zuber P. Nakano M.M. J. Bacteriol. 1996; 178: 3803-3808Crossref PubMed Google Scholar). Furthermore, inA. eutrophus, mutation of the hmp homologue,fhp, results in failure to detect nitrous oxide as an intermediate during denitrification (9Cramm R. Siddiqui R.A. Friedrich B. J. Biol. Chem. 1994; 269: 7349-7354Abstract Full Text PDF PubMed Google Scholar). Recently the Salmonella typhimurium flavohemoglobin has been shown to confer resistance to acidified nitrite (and thus presumably NO) andS-nitrosothiols (24Crawford M.J. Goldberg D.E. J. Biol. Chem. 1998; 273: 12543-12547Abstract Full Text Full Text PDF PubMed Scopus (155) Google Scholar), and E. coli Hmp has been shown to have NO dioxygenase activity (25Gardner P.R. Gardner A.M. Martin L.A. Salzman A.L. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 10378-10383Crossref PubMed Scopus (492) Google Scholar). These findings implicate bacterial flavohemoglobins in detoxification or utilization of NO. However, other evidence suggests that microbial flavohemoglobins are involved in responses to oxidative stress. Paraquat (1,1′-dimethyl-4–4′-bipyridinium dichloride; methyl viologen) is a strong inducer of the hmp gene, independently of the SoxRS regulatory system (26Membrillo-Hernández J. Kim S.O. Cook G.M. Poole R.K. J. Bacteriol. 1997; 179: 3164-3170Crossref PubMed Google Scholar), and Hmp itself generates superoxide anion, detectable using a superoxide-sensitive Φ(sodA-lacZ) fusion or with the purified protein (20Membrillo-Hernández J. Ioannidis N. Poole R.K. FEBS Lett. 1997; 382: 141-144Crossref Scopus (60) Google Scholar). The yeast flavohemoglobin encoded by the YHB1 gene is also induced by agents that promote oxidative stress and antimycin A (27Zhao X.-J. Raitt D. Burke P.V. Clewell A.S. Kwast K.E. Poyton R.O. J. Biol. Chem. 1996; 271: 25131-25138Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar), but a subsequent re-examination has produced conflicting views (28Buisson N. Labbe-Bois R. J. Biol. Chem. 1998; 273: 9527-9533Abstract Full Text Full Text PDF PubMed Scopus (43) Google Scholar). To resolve whether E. coli Hmp is important in responses to oxidative stress or NO, or both, we have constructed the first defined null allele of hmp and used this mutant to test responses to paraquat, sodium nitroprusside (SNP, a nitrosating agent) andS-nitrosoglutathione (GSNO) andS-nitroso-N-penicillamine (SNAP), the last two being widely used as NO-releasing agents. In addition, since the SoxRS system" @default.
- W1971873200 created "2016-06-24" @default.
- W1971873200 creator A5008614222 @default.
- W1971873200 creator A5017700697 @default.
- W1971873200 creator A5030395937 @default.
- W1971873200 creator A5036399202 @default.
- W1971873200 creator A5062043579 @default.
- W1971873200 creator A5066581613 @default.
- W1971873200 creator A5081826269 @default.
- W1971873200 date "1999-01-01" @default.
- W1971873200 modified "2023-10-16" @default.
- W1971873200 title "The Flavohemoglobin of Escherichia coli Confers Resistance to a Nitrosating Agent, a “Nitric Oxide Releaser,” and Paraquat and Is Essential for Transcriptional Responses to Oxidative Stress" @default.
- W1971873200 cites W1516415065 @default.
- W1971873200 cites W1563052800 @default.
- W1971873200 cites W1567843894 @default.
- W1971873200 cites W1575028964 @default.
- W1971873200 cites W1577342014 @default.
- W1971873200 cites W1580076592 @default.
- W1971873200 cites W1589199271 @default.
- W1971873200 cites W1597510818 @default.
- W1971873200 cites W1605201659 @default.
- W1971873200 cites W1662121310 @default.
- W1971873200 cites W1922255305 @default.
- W1971873200 cites W1953355379 @default.
- W1971873200 cites W1977280129 @default.
- W1971873200 cites W1979494025 @default.
- W1971873200 cites W1982952016 @default.
- W1971873200 cites W1985215766 @default.
- W1971873200 cites W1988994128 @default.
- W1971873200 cites W1993099360 @default.
- W1971873200 cites W1993353847 @default.
- W1971873200 cites W2001207916 @default.
- W1971873200 cites W2005314978 @default.
- W1971873200 cites W2005886235 @default.
- W1971873200 cites W2020683536 @default.
- W1971873200 cites W2022109900 @default.
- W1971873200 cites W2027199621 @default.
- W1971873200 cites W2027400303 @default.
- W1971873200 cites W2030534888 @default.
- W1971873200 cites W2044743938 @default.
- W1971873200 cites W2048937558 @default.
- W1971873200 cites W2053461150 @default.
- W1971873200 cites W2062573914 @default.
- W1971873200 cites W2068453197 @default.
- W1971873200 cites W2078015782 @default.
- W1971873200 cites W2081590051 @default.
- W1971873200 cites W2090775573 @default.
- W1971873200 cites W2091117085 @default.
- W1971873200 cites W2091876246 @default.
- W1971873200 cites W2092922981 @default.
- W1971873200 cites W2094438653 @default.
- W1971873200 cites W2097779781 @default.
- W1971873200 cites W2133709520 @default.
- W1971873200 cites W2154274648 @default.
- W1971873200 cites W2156341767 @default.
- W1971873200 cites W2158023121 @default.
- W1971873200 cites W2162483715 @default.
- W1971873200 cites W2164149612 @default.
- W1971873200 cites W2183285742 @default.
- W1971873200 cites W2229777526 @default.
- W1971873200 cites W2380860737 @default.
- W1971873200 cites W4234115739 @default.
- W1971873200 doi "https://doi.org/10.1074/jbc.274.2.748" @default.
- W1971873200 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9873011" @default.
- W1971873200 hasPublicationYear "1999" @default.
- W1971873200 type Work @default.
- W1971873200 sameAs 1971873200 @default.
- W1971873200 citedByCount "142" @default.
- W1971873200 countsByYear W19718732002012 @default.
- W1971873200 countsByYear W19718732002013 @default.
- W1971873200 countsByYear W19718732002014 @default.
- W1971873200 countsByYear W19718732002015 @default.
- W1971873200 countsByYear W19718732002016 @default.
- W1971873200 countsByYear W19718732002018 @default.
- W1971873200 countsByYear W19718732002019 @default.
- W1971873200 countsByYear W19718732002020 @default.
- W1971873200 countsByYear W19718732002021 @default.
- W1971873200 countsByYear W19718732002022 @default.
- W1971873200 crossrefType "journal-article" @default.
- W1971873200 hasAuthorship W1971873200A5008614222 @default.
- W1971873200 hasAuthorship W1971873200A5017700697 @default.
- W1971873200 hasAuthorship W1971873200A5030395937 @default.
- W1971873200 hasAuthorship W1971873200A5036399202 @default.
- W1971873200 hasAuthorship W1971873200A5062043579 @default.
- W1971873200 hasAuthorship W1971873200A5066581613 @default.
- W1971873200 hasAuthorship W1971873200A5081826269 @default.
- W1971873200 hasBestOaLocation W19718732001 @default.
- W1971873200 hasConcept C104317684 @default.
- W1971873200 hasConcept C178790620 @default.
- W1971873200 hasConcept C185592680 @default.
- W1971873200 hasConcept C2776151105 @default.
- W1971873200 hasConcept C2776527163 @default.
- W1971873200 hasConcept C519581460 @default.
- W1971873200 hasConcept C547475151 @default.
- W1971873200 hasConcept C55493867 @default.
- W1971873200 hasConcept C57600042 @default.
- W1971873200 hasConcept C86803240 @default.
- W1971873200 hasConcept C89423630 @default.