Matches in SemOpenAlex for { <https://semopenalex.org/work/W1971924430> ?p ?o ?g. }
- W1971924430 endingPage "161" @default.
- W1971924430 startingPage "147" @default.
- W1971924430 abstract "Magnetic resonance imaging (MRI) is frequently used to detect and segment multiple sclerosis lesions due to the detailed and rich information provided. We present a modified expectation-maximisation algorithm to segment brain tissues (white matter, grey matter, and cerebro-spinal fluid) as well as a partial volume class containing fluid and grey matter. This algorithm provides an initial segmentation in which lesions are not separated from tissue, thus a second step is needed to find them. This second step involves the thresholding of the FLAIR image, followed by a regionwise refinement to discard false detections. To evaluate the proposal, we used a database with 45 cases comprising 1.5T imaging data from three different hospitals with different scanner machines and with a variable lesion load per case. The results for our database point out to a higher accuracy when compared to two of the best state-of-the-art approaches." @default.
- W1971924430 created "2016-06-24" @default.
- W1971924430 creator A5027168396 @default.
- W1971924430 creator A5049566648 @default.
- W1971924430 creator A5060317108 @default.
- W1971924430 creator A5063275381 @default.
- W1971924430 creator A5064897887 @default.
- W1971924430 creator A5077881500 @default.
- W1971924430 creator A5081276735 @default.
- W1971924430 creator A5082890627 @default.
- W1971924430 date "2014-07-01" @default.
- W1971924430 modified "2023-10-18" @default.
- W1971924430 title "Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding" @default.
- W1971924430 cites W1605096437 @default.
- W1971924430 cites W1973457617 @default.
- W1971924430 cites W1982011685 @default.
- W1971924430 cites W1989102171 @default.
- W1971924430 cites W1998070036 @default.
- W1971924430 cites W2012259938 @default.
- W1971924430 cites W2017359830 @default.
- W1971924430 cites W2018017287 @default.
- W1971924430 cites W2018662705 @default.
- W1971924430 cites W2020745232 @default.
- W1971924430 cites W2021204548 @default.
- W1971924430 cites W2023557257 @default.
- W1971924430 cites W2071881327 @default.
- W1971924430 cites W2090659565 @default.
- W1971924430 cites W2095417127 @default.
- W1971924430 cites W2102290518 @default.
- W1971924430 cites W2102848905 @default.
- W1971924430 cites W2113576511 @default.
- W1971924430 cites W2117340355 @default.
- W1971924430 cites W2119848633 @default.
- W1971924430 cites W2122894564 @default.
- W1971924430 cites W2123223785 @default.
- W1971924430 cites W2128806031 @default.
- W1971924430 cites W2129711715 @default.
- W1971924430 cites W2132513126 @default.
- W1971924430 cites W2133061701 @default.
- W1971924430 cites W2150134853 @default.
- W1971924430 cites W2151050383 @default.
- W1971924430 cites W2157848968 @default.
- W1971924430 cites W2164777277 @default.
- W1971924430 cites W2189173459 @default.
- W1971924430 cites W2269824834 @default.
- W1971924430 cites W2977883299 @default.
- W1971924430 doi "https://doi.org/10.1016/j.cmpb.2014.04.006" @default.
- W1971924430 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24813718" @default.
- W1971924430 hasPublicationYear "2014" @default.
- W1971924430 type Work @default.
- W1971924430 sameAs 1971924430 @default.
- W1971924430 citedByCount "40" @default.
- W1971924430 countsByYear W19719244302015 @default.
- W1971924430 countsByYear W19719244302016 @default.
- W1971924430 countsByYear W19719244302017 @default.
- W1971924430 countsByYear W19719244302018 @default.
- W1971924430 countsByYear W19719244302019 @default.
- W1971924430 countsByYear W19719244302020 @default.
- W1971924430 countsByYear W19719244302021 @default.
- W1971924430 countsByYear W19719244302022 @default.
- W1971924430 countsByYear W19719244302023 @default.
- W1971924430 crossrefType "journal-article" @default.
- W1971924430 hasAuthorship W1971924430A5027168396 @default.
- W1971924430 hasAuthorship W1971924430A5049566648 @default.
- W1971924430 hasAuthorship W1971924430A5060317108 @default.
- W1971924430 hasAuthorship W1971924430A5063275381 @default.
- W1971924430 hasAuthorship W1971924430A5064897887 @default.
- W1971924430 hasAuthorship W1971924430A5077881500 @default.
- W1971924430 hasAuthorship W1971924430A5081276735 @default.
- W1971924430 hasAuthorship W1971924430A5082890627 @default.
- W1971924430 hasConcept C101070640 @default.
- W1971924430 hasConcept C115961682 @default.
- W1971924430 hasConcept C118552586 @default.
- W1971924430 hasConcept C126838900 @default.
- W1971924430 hasConcept C142724271 @default.
- W1971924430 hasConcept C143409427 @default.
- W1971924430 hasConcept C153180895 @default.
- W1971924430 hasConcept C154945302 @default.
- W1971924430 hasConcept C191178318 @default.
- W1971924430 hasConcept C2778013878 @default.
- W1971924430 hasConcept C2779751349 @default.
- W1971924430 hasConcept C2780640218 @default.
- W1971924430 hasConcept C2781156865 @default.
- W1971924430 hasConcept C2781192897 @default.
- W1971924430 hasConcept C2989005 @default.
- W1971924430 hasConcept C41008148 @default.
- W1971924430 hasConcept C58693492 @default.
- W1971924430 hasConcept C71924100 @default.
- W1971924430 hasConcept C89600930 @default.
- W1971924430 hasConceptScore W1971924430C101070640 @default.
- W1971924430 hasConceptScore W1971924430C115961682 @default.
- W1971924430 hasConceptScore W1971924430C118552586 @default.
- W1971924430 hasConceptScore W1971924430C126838900 @default.
- W1971924430 hasConceptScore W1971924430C142724271 @default.
- W1971924430 hasConceptScore W1971924430C143409427 @default.
- W1971924430 hasConceptScore W1971924430C153180895 @default.
- W1971924430 hasConceptScore W1971924430C154945302 @default.
- W1971924430 hasConceptScore W1971924430C191178318 @default.