Matches in SemOpenAlex for { <https://semopenalex.org/work/W1971992009> ?p ?o ?g. }
- W1971992009 endingPage "270" @default.
- W1971992009 startingPage "256" @default.
- W1971992009 abstract "Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier–Stokes and advection–diffusion–reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection–diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparison to prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model under conditions in which one or more nutrients were limiting. The fitted Monod kinetic model was also applied at the Darcy scale; that is, to simulate average reaction processes at the scale of the entire pore-scale model domain. As we expected, even under excess nutrient conditions for which the Monod and genome-scale models predicted equal reaction rates at the pore scale, the Monod model over-predicted the rates of biomass growth and iron and acetate utilization when applied at the Darcy scale. This discrepancy is caused by an inherent assumption of perfect mixing over the Darcy-scale domain, which is clearly violated in the pore-scale models. These results help to explain the need to modify the flux constraint parameters in order to match observations in previous applications of the genome-scale model at larger scales. These results also motivate further investigation of quantitative multi-scale relationships between fundamental behavior at the pore scale (where genome-scale models are appropriately applied) and observed behavior at larger scales (where predictions of reactive transport phenomena are needed)." @default.
- W1971992009 created "2016-06-24" @default.
- W1971992009 creator A5005097813 @default.
- W1971992009 creator A5015634711 @default.
- W1971992009 creator A5021568652 @default.
- W1971992009 creator A5029804061 @default.
- W1971992009 creator A5058959716 @default.
- W1971992009 creator A5071144265 @default.
- W1971992009 date "2013-09-01" @default.
- W1971992009 modified "2023-10-10" @default.
- W1971992009 title "Pore-scale simulation of microbial growth using a genome-scale metabolic model: Implications for Darcy-scale reactive transport" @default.
- W1971992009 cites W1494044150 @default.
- W1971992009 cites W1494994854 @default.
- W1971992009 cites W1517281087 @default.
- W1971992009 cites W1747335313 @default.
- W1971992009 cites W1852585913 @default.
- W1971992009 cites W1965602485 @default.
- W1971992009 cites W1973600879 @default.
- W1971992009 cites W1974949905 @default.
- W1971992009 cites W1975022076 @default.
- W1971992009 cites W1976215390 @default.
- W1971992009 cites W1977637002 @default.
- W1971992009 cites W1990652770 @default.
- W1971992009 cites W1994318446 @default.
- W1971992009 cites W2003489966 @default.
- W1971992009 cites W2005770663 @default.
- W1971992009 cites W2009940763 @default.
- W1971992009 cites W2010917499 @default.
- W1971992009 cites W2011442348 @default.
- W1971992009 cites W2011510649 @default.
- W1971992009 cites W2014412017 @default.
- W1971992009 cites W2021292622 @default.
- W1971992009 cites W2022204346 @default.
- W1971992009 cites W2024002199 @default.
- W1971992009 cites W2025663053 @default.
- W1971992009 cites W2026649837 @default.
- W1971992009 cites W2032852592 @default.
- W1971992009 cites W2034138038 @default.
- W1971992009 cites W2035782609 @default.
- W1971992009 cites W2054300247 @default.
- W1971992009 cites W2055521663 @default.
- W1971992009 cites W2057124808 @default.
- W1971992009 cites W2057376905 @default.
- W1971992009 cites W2058744154 @default.
- W1971992009 cites W2065858555 @default.
- W1971992009 cites W2066554051 @default.
- W1971992009 cites W2067824988 @default.
- W1971992009 cites W2068273853 @default.
- W1971992009 cites W2070075418 @default.
- W1971992009 cites W2070260902 @default.
- W1971992009 cites W2081572309 @default.
- W1971992009 cites W2082920937 @default.
- W1971992009 cites W2083011190 @default.
- W1971992009 cites W2084979535 @default.
- W1971992009 cites W2086140053 @default.
- W1971992009 cites W2090002891 @default.
- W1971992009 cites W2090512212 @default.
- W1971992009 cites W2091623402 @default.
- W1971992009 cites W2100088878 @default.
- W1971992009 cites W2103736180 @default.
- W1971992009 cites W2111421616 @default.
- W1971992009 cites W2122054539 @default.
- W1971992009 cites W2125322192 @default.
- W1971992009 cites W2134981469 @default.
- W1971992009 cites W2139097021 @default.
- W1971992009 cites W2143534548 @default.
- W1971992009 cites W2159852865 @default.
- W1971992009 cites W2161164464 @default.
- W1971992009 cites W2164513556 @default.
- W1971992009 cites W2167768388 @default.
- W1971992009 cites W2171092495 @default.
- W1971992009 cites W2172042317 @default.
- W1971992009 cites W2317678112 @default.
- W1971992009 cites W2320650311 @default.
- W1971992009 cites W7225842 @default.
- W1971992009 cites W2133265168 @default.
- W1971992009 doi "https://doi.org/10.1016/j.advwatres.2013.05.007" @default.
- W1971992009 hasPublicationYear "2013" @default.
- W1971992009 type Work @default.
- W1971992009 sameAs 1971992009 @default.
- W1971992009 citedByCount "21" @default.
- W1971992009 countsByYear W19719920092014 @default.
- W1971992009 countsByYear W19719920092015 @default.
- W1971992009 countsByYear W19719920092017 @default.
- W1971992009 countsByYear W19719920092018 @default.
- W1971992009 countsByYear W19719920092019 @default.
- W1971992009 countsByYear W19719920092020 @default.
- W1971992009 countsByYear W19719920092022 @default.
- W1971992009 crossrefType "journal-article" @default.
- W1971992009 hasAuthorship W1971992009A5005097813 @default.
- W1971992009 hasAuthorship W1971992009A5015634711 @default.
- W1971992009 hasAuthorship W1971992009A5021568652 @default.
- W1971992009 hasAuthorship W1971992009A5029804061 @default.
- W1971992009 hasAuthorship W1971992009A5058959716 @default.
- W1971992009 hasAuthorship W1971992009A5071144265 @default.
- W1971992009 hasConcept C101014631 @default.
- W1971992009 hasConcept C115540264 @default.
- W1971992009 hasConcept C121332964 @default.