Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972014009> ?p ?o ?g. }
- W1972014009 endingPage "2276" @default.
- W1972014009 startingPage "2251" @default.
- W1972014009 abstract "<para xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> A review of the higher order computational electromagnetics (CEM) for antenna, wireless, and microwave engineering applications is presented. Higher order CEM techniques use current/field basis functions of higher orders defined on large (e.g., on the order of a wavelength in each dimension) curvilinear geometrical elements, which greatly reduces the number of unknowns for a given problem. The paper reviews all major surface/volume integral- and differential-equation electromagnetic formulations within a higher order computational framework, focusing on frequency-domain solutions. With a systematic and unified review of generalized curved parametric quadrilateral, triangular, hexahedral, and tetrahedral elements and various types of higher order hierarchical and interpolatory vector basis functions, in both divergence- and curl-conforming arrangements, a large number of actual higher order techniques, representing various combinations of formulations, elements, bases, and solution procedures, are identified and discussed. The examples demonstrate the accuracy, efficiency, and versatility of higher order techniques, and their advantages over low-order discretizations, the most important one being a much faster (higher order) convergence of the solution. It is demonstrated that both components of the higher order modeling, namely, higher order geometrical modeling and higher order current/field modeling, are essential for accurate and efficient CEM analysis of general antenna, scattering, and microwave structures. </para>" @default.
- W1972014009 created "2016-06-24" @default.
- W1972014009 creator A5027524682 @default.
- W1972014009 date "2008-08-01" @default.
- W1972014009 modified "2023-10-12" @default.
- W1972014009 title "Higher Order Frequency-Domain Computational Electromagnetics" @default.
- W1972014009 cites W1491162839 @default.
- W1972014009 cites W1515302430 @default.
- W1972014009 cites W1530504647 @default.
- W1972014009 cites W1570126984 @default.
- W1972014009 cites W1615525892 @default.
- W1972014009 cites W1896189214 @default.
- W1972014009 cites W1948805355 @default.
- W1972014009 cites W1967209065 @default.
- W1972014009 cites W1977744756 @default.
- W1972014009 cites W1981220107 @default.
- W1972014009 cites W1981691848 @default.
- W1972014009 cites W1983410767 @default.
- W1972014009 cites W1983500505 @default.
- W1972014009 cites W1983982466 @default.
- W1972014009 cites W1985322811 @default.
- W1972014009 cites W1985871045 @default.
- W1972014009 cites W1988706343 @default.
- W1972014009 cites W1993768919 @default.
- W1972014009 cites W2002219839 @default.
- W1972014009 cites W2002613189 @default.
- W1972014009 cites W2008033278 @default.
- W1972014009 cites W2010209670 @default.
- W1972014009 cites W2015736665 @default.
- W1972014009 cites W2021621217 @default.
- W1972014009 cites W2021810545 @default.
- W1972014009 cites W2022809495 @default.
- W1972014009 cites W2029068876 @default.
- W1972014009 cites W2029096514 @default.
- W1972014009 cites W2030160782 @default.
- W1972014009 cites W2031990962 @default.
- W1972014009 cites W2038608521 @default.
- W1972014009 cites W2039730586 @default.
- W1972014009 cites W2040298674 @default.
- W1972014009 cites W2047598896 @default.
- W1972014009 cites W2051922990 @default.
- W1972014009 cites W2054380687 @default.
- W1972014009 cites W2060223826 @default.
- W1972014009 cites W2062618977 @default.
- W1972014009 cites W2064909895 @default.
- W1972014009 cites W2069733000 @default.
- W1972014009 cites W2075490044 @default.
- W1972014009 cites W2077683946 @default.
- W1972014009 cites W2079080741 @default.
- W1972014009 cites W2082624758 @default.
- W1972014009 cites W2084948735 @default.
- W1972014009 cites W2088318806 @default.
- W1972014009 cites W2090905095 @default.
- W1972014009 cites W2097666483 @default.
- W1972014009 cites W2098267114 @default.
- W1972014009 cites W2098350111 @default.
- W1972014009 cites W2098421255 @default.
- W1972014009 cites W2099000848 @default.
- W1972014009 cites W2099244929 @default.
- W1972014009 cites W2100992715 @default.
- W1972014009 cites W2103361873 @default.
- W1972014009 cites W2103491295 @default.
- W1972014009 cites W2105213865 @default.
- W1972014009 cites W2105790430 @default.
- W1972014009 cites W2105852640 @default.
- W1972014009 cites W2106001413 @default.
- W1972014009 cites W2106934639 @default.
- W1972014009 cites W2107467533 @default.
- W1972014009 cites W2107926220 @default.
- W1972014009 cites W2107927172 @default.
- W1972014009 cites W2111148770 @default.
- W1972014009 cites W2111202717 @default.
- W1972014009 cites W2112598614 @default.
- W1972014009 cites W2112733149 @default.
- W1972014009 cites W2112971490 @default.
- W1972014009 cites W2114529538 @default.
- W1972014009 cites W2115185293 @default.
- W1972014009 cites W2116225395 @default.
- W1972014009 cites W2117032748 @default.
- W1972014009 cites W2119796171 @default.
- W1972014009 cites W2120605336 @default.
- W1972014009 cites W2121095111 @default.
- W1972014009 cites W2121783928 @default.
- W1972014009 cites W2122849672 @default.
- W1972014009 cites W2122955475 @default.
- W1972014009 cites W2124025436 @default.
- W1972014009 cites W2124037029 @default.
- W1972014009 cites W2125417350 @default.
- W1972014009 cites W2126126896 @default.
- W1972014009 cites W2126775337 @default.
- W1972014009 cites W2127570421 @default.
- W1972014009 cites W2128149551 @default.
- W1972014009 cites W2128341139 @default.
- W1972014009 cites W2128834968 @default.
- W1972014009 cites W2129723745 @default.
- W1972014009 cites W2130203831 @default.
- W1972014009 cites W2130792919 @default.
- W1972014009 cites W2130970049 @default.